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Abstzact

In seeking rational models of time series, the comcept of approximating
second order statistical relationships (i.e., the Yule-VWalker equations) is
often explicitly or implicitly invoked. The parameters of the hypothesized
rational model are typically selected so that these relationships ‘best
represent’ a set of autocorrelation lag estimates computed from time series
obgervations. One of the objectives of this paper will be that of
establishing this fundamental approach to the gemeratiom of rational models.

An examination of many popular coatemporary spectral estimatioa methods
reveals that the parameters of a hypothesized rationsl model are estimated
upon using a ‘minimal’ set of Yule—-Walker equation evaluations. This results
in an undesired parsmeter hypersensitivity and a subsequent decrease ia
estimation performance., To counteract this parameter hyperseasitivity, the
concept of using more than the minimal anumber of Yule-Walker equatioa
evaluations is herein advoocated. It is shown that by taking this
overdetermined parsmetric evaluation approsch, a reduction in dats induced
model parameter LRyperseasitivity is obtained, and, a correspondiag
improvement in modeling performance results. Moreover, upon adapting a
singular value decomposition represeantation of anm extended order

autocorrelation matrix estimate to this procedure, a desired model order
determination method is obtained and s further significant improvemeat in
modeling performance is achieved. This approach makes possible the
generation of low order, high quality ratiomal spectral estimates from short
data lengths.




L.__Iatzroduction
In a variety of applications such as found in radar doppler processing,

adaptive filtering, speech processing, underwater acoustics, seismology,
econometrics, spectral estimation and array processing, it is desired to
estimate the statistical characteristios of a wide—sense statiomary time
series. DMore often tham not, this required characterization is embodied in
the time series’ autocorrelation lag sequence as specified by

£z(n) = B {zx(a+m)X(m))} (1.1)
in which E and - demote the operations of expectation and ocomplex
conjugstion, respectively. From this definition, the well-knowm property
that the autocorrelation lags sre complex conjugate symmetric (i.e., ry(-n) =
Tx(n)) is readily established. We will automaticslly sssume this property
whenever negative lag auntocorrelation elements (or their estimates) are
required.

The second order statistical characterization as represented bdy the
autocorrelation sequence may bde given an ‘equivalent’ frequency domain
interpretation. Namely, upon taking the Fourier tramsform of the
sutocorrelation sequence, that is

3:(e3%) = ) r;(a) omiue (1.2)
E—an

we obtain the associated power spectral density function Sy(ei®) in which the

normalized frequency varisble e takes om values ia [—x,n]. This function
possesses a number of salient properties among which are that it is a
positive semidefinite, symmetric (if the time series is real wvalued), and,
periodic funmotion of w. This funotion is seen to have a Fourier series
interpretation in which the antocorrelation lags play the role of the Fourier
coefficients. It therefore follows that these coefficients may be determined
from the power spectral density function through the Fourier series
coefficient integral expression

1!
re(n) = 1 I Sg(ei®) oI*® a4 (1.3)
2
-'

2
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Relationships {1.2) and (1.3) }m a Fourier transform pair so that knowledge
of the autocorrelation sequence is oquivalent to knowledge of the power
spectral density function and vice versa. We belabor this point im order to
establish the viewpoint that spectral estimation and autocorrelation lag
estimation are conceptually equivalent.

In the classical speotral estimation problem, it is desired to effect an
estimate of the underlying power spectrsl density function with this estimate
being based on only a finite set of time series observations. Typically,
these observations will be composed of a2 set of coantiguous data measurements
taken at equispaced time intervals T as represeated by

z(1), 2(2), . . ., x(N) (1.4)
where N will be referred to as the data length and we have chosen to suppress
the sampling period T. It is apparent that unless some coastraiants are
imposed on the basic nature of the power spectral density function, there
exists a fundamental incompatability in seeking an estimate of the infinite
parameter funmction (1.2) (i.e., the infinite set of autocorrelation lags
rg(n)) based on the finite set of observations (1.4). Investigators have
often resolved this dilemma by postulating a finite parameter model for the
power spectral density function, The time series observations (1.4) are then
used to fix the parsmeters of this parametric model using an appropriate
estimation procedure.

Without doubt, the most widely used and studied of finite parametric
models are tke so—called rational models. Vhen employing a rational model,
we are seeking to approximate the generally infinite series expansion (1.2)
by a magnitude squared ratio of polynomials in the variable e=J®, that is

by + bl.-". + eee *+ bq.".’q. 2

S(ejw) = (1.5)

1+a3 6730+, + apeipe

The finite number of parsmeters ia this model then provides the mechanism for
circumventing the aforementioned parameter mismatch dilemma. Namely, if the
data length parsmoter N adequately exceeds this ratiomal fumctioa’s ammber of
parsmeters (i.e., p+qtl), thenm it is feasidble to utilize the given time

sories observations (1.4) to estimate values for these parmmeters. A few

words age now appropriate gomcerning the adequacy of
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rational models in represeating power spectral density functions. It is well
known that if a power spectral demsity funcotion is continmuous in the variable
@, thea it may be approximated arbitrarily closely by a rational fuactiom of
form (1.5) if the order parsameters p and q are sslected suitably large [41].
Comforted by this kmnowledge, rational functions have become a standard tool
of spectral estimation theoreticians. As an iateresting side note, it is
ironical that the origin of spectral eostimation was in the use of ratiomal
models for characterizing time series composed of sinusoids in white noise.
Members of this class of time series possess djiscoptinuous power spectral
density functions and are therefore presumably not reprosentable by a
rational model. As we will see in Section III, however, it is possible to
suitably adapt a specific rational model 30 as to satisfactorily characterize
this class of time series.

This paper is primarily concerned with developing a modeling method
which utilizes an overdetermined set of statistical equations for estimating
A rational model's parameters., Using this approach, it is found that the
resul tant modeling performance is generally better than that achieved by
other popularly used parsmetric methods. Although the approach here taken
reflects heavily upon the author'’s previous works [15]1-[22], much of this
paper will be oconcerned with formulating many ocontemporary spectral
estimation methods in a common antocorrelation represemtation setting, It
must be emphasized that our main objective is not that of giving an
encylopedic ocoverage of the many available rational spectral estimation
techniques. This paper iz conjunction with the excelleat recent publications
[23],031],[37], bhowever, provides a reasomable complete ocoverage of
parametric methods,

In the remainder of this section, we shall consider two special classes
of rational functions and give a brief historical perspective on their usage
in spectral estimation theory. These two classes are commonly referred to as
the moving average (MA) and the autoregressive (AR) spectral models, A
moving average model is defined to be a rational funotion (1.5) in which all
the sy parsmeters are zero (i.e., it has only numerator dynamics) while an
autoregressive model is one for which all the by parameters are zero except
for b, (i.e., it has only denominmator dymamics). By-inmlarge, these two
olasses of ratiomal functions have formed the basic modeling tools in
coatemporary speotral estimatiom theory.




MA Nodel
Fourier analysis has played a primary role in much of the earlier as

well as more recent efforts at spectrally characterizing experimentally
collected data., As an example, Schuster applisd the periodogram method for
deteoting hidden periodicities in sun spot activity dats at the turn of the
century [58]. In a more recent classical work, Blackman and Tukey preseamted
a goneralized procedure for effocting spectral estimates [8]. This involved
the two step procedure of (i) determining autocorrelation lag estimates Qx(a)
using the provided data, and, (ii) taking the Fourier transform of these
estimates.l The power spectral density estimate which arose whez taking
this approach thea took the form

q
gx(ejﬂ) = 2 w(n) :'x(n) o—jun (1.6)
nm—q

where w(n) is a symmetric data window that is chosen to achieve various
desirable effects such as side lobe reduction. This window is often selected
to be rectangular in which case w(n) = 1 although other choices may be more
desirable for a given application. A description of some of the more popular
choices for the data window may be found in numerous texts (e.g., ses refs,
£33],(501,£57]1).

In the Blackman-Tokey estimate (1.6), it is seen that only a finite
number of summand terms (i.e., 2q+l) atre involved ina the spectral estimate.
This is a direct oconsequence of the fact that oply a finite set of
autocorrelation lag estimates are obtainable from the observation set (1.4)
if standard lag estimation methods are employed. Due to this fiaite smm
structure, we will now show that the Blackman—Tukey estimation method is s
special case of the more general ratiomal MA spectral model. In particumlar,
a spectral model is said to be a moving sverage model of order q (i.e.,
MA(q)) if it may be put into the form )

1 We shall hereafter use the ‘aret s 51 (A) to denmote a statistical
estimate,

LA
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2
sn(o.i“) = | by + by e—jo ¢+ ... + bq_ o—Jjqe |
(1.7)
2
- l Bq(Oj“) l

The q+1 parsmeters by, b3, ..., bg which identify this MA(q) model are seen
to form a qth order polynomial Bq(ei®) in the variable e—j®, A moving
average model is then seen to be a special case of ‘the more general ratiomal
model (1.5) in which the denominator polynomial has been set equsl to the
coanstant one,

If the polynomial Bg(eJ®) constituting the moving average model (1.7) is
factored, it is possible to provide additionsl insight into a MA model’'s
properties. This factorization is seen to give rise to the equivalent

representation

q
Sialed® = 1bg12 TT (1 = zge=iw) (1 - Txed®) (1.8)
k=1

in which the zy are the roots of the polynomial Bg(ei®). The zeroes of a MA
spectral model are seem to ocour in reciprocal pairs, Due to the basic
nature of this facotorization, moving average models are therefore also
-~mmonly referred to as gll-zero models, If any of the roots zy are close to
the unit circle (i.e., zjx =~ eJ¥k), it is clear that Sn(oJ“) will coatain
sharply defined notches at frequencies in s neighborhood associated with
these roots (i.e., @ = wy), It is therefore apparent that MA models will be
particularly effective when approximating spectra that contain sharply
defined notches (zero like behavior), but, do not contain sharply defined
peaks, Vhenever a spectrum contains sharply defined peaks, it is possible to
simulate their eoffect at the cost of many additional zeroces (i.e., s high NA
order) for an adequate representation, Vith this in mind, NA models should
be normally avoided whemever a peaky type behavior in the underlying spectrum
is suspected (as may be made eovident from a preliminary Blackman—Tukey
estimate),

To establish the fact that the Blackman-Tukey approach to spectral
estimation is of a moving average struoture, it is possible to give yet
another equivalent reopresentation to the MA(q) expression (1.7). This will




entail explicitly carrying out the indicated polynmomial product
Bq(o.ib) iq(ej“) thereby giving

q
Spa(ed®) = } op ¢ jun (1.9)

n=—q

in which the complex conjugate symmetric ¢, parameters are related to the

original b, parameters according to

q
n= ) by bpg ~a<nsq (1.10)
k=0 '

Upon setting the o, equal to w(m)ry(n), it is apparent that the
Blackman—Tukey estimate (1.6) is a special form MA(q) model. This fact is
usually overlooked by investigators who have considered the Blackman—Tukey
method as well as the periodogram as nonparametric specotral estimators. When
viewed from the approach here taken, however, each of these procedures is

recognized as being a realization of a MA parametric model.

AR Nodel

When we compare the MA(q) spectral model expression (1.9) with the
theoretical power spectral density function (1.2) which is being estimated,
it is apparent that a serious modeling mismatch ocan arise whenever the
underlying autocorrelation lags are such that the rz(nm) are not approximately
equal to zero for n > q. For example, this undesirable condition arises when
the time series under study is ocomposed of sinusoids in white mnoise.
Conversely, this condition does not arise for broad band signals, The
sinusoid eoxample is mentiomed since it forms ome of the more interesting
special case time series to which spectral estimation techniques are applied.
A special treatment of the sinusoids in white noise case will be given in
Section IIIX.

In recognition of this potential shortcoming of MA models, investigators
have eoxamined altermate ratiomsl spectral models which do not iavoke the

unnecessarily harsh requirement of a truncated autocorrelation lag behavior.
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Undoubtably, the most widely used of such model:r is the AR model. Namely, a
spectral model is said to be an autoregressive model of order p (i.e., AR(p))
if it may be put ianto the form

2
Sxp(el®) = %
1+ a1e7J% 4 0907020 + | + ajye”iPe (1.11)
i} v 12
—_—
1A, (ed®) ]

This AR(p) model has a functiomal behavior which is completely characterized
by its p+l parsmeters b,, a;, 82, ..., ap. The characteristic pth order
,polynomial A,(e.i") is seen to influemce the <£frequency behavior of the
estimate while the parameter b, controls the level.

As in the MNA model case, valuable insight into the capsbilities of AR
modeling is provided upon factoring the polynomial Ap(ej"). This is found to
result in the equivalent represeamtation

[bg 12
Sxp(ei®) = " (1.12)

T (1-ppe=i®)(1-pyei®)
k=1

where the py are the roots of Ap(ej“). The poles of this AR spectral model
sre seen to occur in reciprocal pairs. For reasons which are self evident,
the AR(p) spectrsl model is also ocommonly referred to as an all-pole model.
As such, it is particularly appropriste for modeling spectra which contain
sharply defined peaks (pole like behavior), but, do not contain sharply
defined notches. If a spectrum does possess notches, however, it is possidle
to simulate their effect at the cost of many additional poles (i.e., a high
AR order). In terms of parsmeter parsimonmy, it is therefore prudeant to avoid
AR models whenever notoches ia the underlying spectrum are suspected (this may
be made evident from a preliminary Blackman—Tukey estimate).

Autoregressive models were used by Yule [66] and Walker [63] in
forecasting trends of economically based time series. These models were thea
employed by Burg [13] in 1967 and Parzen [53] in 1968 to achieve spectral
estimates which did not possess the aforementioned deficiemcies of the MA

model. The Burg method is of particular interest since it offered a new




insight into spectral modeling and introduced a number of concepts that are
now standard tools of spectral estimation. This inocludes an efficiemt
lattice structured implementation of the Burg method which has since been
examined and advanced by many investigators (eo.g., see ref. [44]). It is not
an exaggeration to say that Burg’s method gave rise to a literal explosiom in
rosearch aoctivity directed towards evolving improved rational modeling

methods.

ARNA MNodels
In many applications, the underlying power spectral density fumotion
will contain both notch and peak like behavior., As such, neither the MA nor

the AR model is the most appropriate model representation from a parameter

PO

parsimony view point. The more gemeral ratiomal model (1.5), however, is
capable of efficiently representing such behavior. This most gemeral

D e e e

rational model is commonly referred to as an autoregressive-moving average
model of order (p,q) (i.e., ARMA (p,q)) with its frequemocy characterization
being given by

.2
bo + ble_j“ + eee + bq.‘jqﬂ

SM(.j.) - 1+ ale"j“ + eee + ‘pC-jp‘
- A—p—(:m (1.13)

An ARMA model is seen to have a frequency characterizatioa which is the
composite of a MA and an AR model. To further reinforce this interpretation,
we have the following equivaleat representation upon factoring the
polynomisls Ap(ei®) and Bg(ei®) which characterize its frequency behavior

q
TT (1~ % o'j")(l-:'kcj“) ;
Sapua(ed®) = Ivgl2 X7t ?

ﬁ' (1 - py e~i®)(1 - Py ei®) (1.14)
k=1 :




An ARMA model is seen to possess q zeroes and p poles, and, as such it is
generally a much more effective model than are its more specialized MA (all
zoro) and AR (all pole) model counterparts. These poles and zeroes are seen

to occur ia reciprocal pairs. ,
Although ARNA models are the most preferable ochoice for most ]
applications, many practitioners have opted to utilize either MA or AR ]
models. There is an inoreasing awareness, however, of the general
superiority of ARMA modeling. This has given rise to a remewed effort to
generate computationally efficient ARMA modeling algorithms, A partioularly
effective approach to ARMA modeling will be presented in this paper.
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In this section, the theoretical autocorrelation characteristics of MA,

AR and ARMA random processes are examined separately. This characterization
will in turn emable us to intelligeatly select the most appropriate ratiomal
model which best teprosgnti a given set of exact autocorrelation lags

r5(0), rx(1), . . ., rx(s) (2.1)
Moreover, a systematic procedure for identifying the selected model’s
parameters from these given autocorrelsation lag values is also developed.
Although the assumption here made of exact attocorrelation information is
highly idealistio and almost never met in applications, the insight thereby
provided is helpful whea considering the more practical problem of gemerating
rational model estimates from raw time series observations,

To begin this analysis, it will be hereafter assumed that the time
sories under examination is gemerated (or can be adequately modeled) as the

response associated with the linear operator

P q
x(n) + } 8 x(n-k) = 2 bx s{n-k) (2.2)
k=1 x=0

in which the excitation time series (e(n)} is takea to be a sequence of zero
moan, unit variance, uncorrelated random variables (i.e., normalized white
noise) that is taken to be unobservable. This excitation—response behavior
is depicted in Figure 2.1. Using standard techniques, it is readily shown
that the power spectrsl density funoction associated with the response time
sories is given by the ARMA(p,q) rational form

2
bo + by e~Jo + .., + bg e~jqe

1+a o-ju+ ...+ .;;-.ilw

Sz(ejw) =

Thus, there is an equivalency between an assumed ARMA (p,q) spectral model,
and, the response of the recursive linear operator (2.2) to white noise. In
this section, the required rational modeling will be developed through use of
the time series description (2.2) and its associated amtocorrelation
characterization., It is interesting to note that most available rational
spectral estimation techniques are based upon a time domain characterization,

X ot 5P
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(n) Bq( .j )

Ap(eiw)

White Noise
Excitation Transfer Funotion

Figure 2.1. DModel of rational time series.

The mechanism for effecting the required ratiomal modeliag are the
so—~called Yule-Walker equations whichk govern linear relatiomship (2.2).
Namely, upon multiplying both sides of this relationship by X(n—m) and thea
taking expected values, it is found that the Yule—Walker equations

P q
} ayry(n-k) = 2 bj B(i-n) (2.3)
k=0 i=0

arise where a, = 1, The entity h(n) herein used corresponds to the
unit—iw + (:e (i.e., Kronecker delta) response of linear operator (2.2). This
mit—impulse response may also be interpreted as being the inverse Fourier
transform of the linear operator’s transfer function Bq(oJU)IA,(.JU). In
what is to follow, it will be assumed that this linear operator is caasal
thereby implying that h(n) = 0 for n negative. Although this sssumption is
not essential in the analysis which follows, it is here imposed in
recognition of the fact that most applications are inherently imvolved with
causal operations., Adaption to the case where noncausal operations are more
appropriate is straightforward and will not be given,

The Yule—-Walker equations (2.3) take om a particularly simple form when
the linear operator (2.2) which they describe is constrained to be a NMA or an
AR linear operator. To delineate this fsct, we shall now examine separately
the basic characteristics of the Yule—Walker equations when the underlying
linear model is taken to be MA, AR, and ARMA,

12
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MA Time Sexijes

The time series {x(n)} is said to be a moving average random process if

it is generated scoording to the linear momrecursive relationship

q
x(a) = ) by e(a-k) (2.4)
k=0 )

where {e(n)} is the aforementioned normalized white noise excitatiom process.
According to the gemeral Yule-Walker equations (2.3), the response’s
autocorrelation sequence is therefore specified by

q

Y by by -¢{ngq (2.5)
rx(n) = k=0

0 otherwise

where use of the facts that ay = 0, and, h(n) = by for 0 { n { q have been
incorporated. Thus, the autocorrelation sequence associated with a moving
average process is seen to bo of finite lemgth (i.e., 2q+l) with the length
identifying the order of the MA(q) process.

We shall now consider the problem of identifying the MA parameters by
which correspond to a& given 2q+l length autocorrelation sequence ry(n) for
-qi{nl{q. This idenmtification will be made by examining the spectral deasity
function associated with the autocorrelation sequence. In particular, upon
taking the z—transform (in lieu of the Fourier transform) of the given 2q+l1
length autocorrelation sequence, we have upon using relationship (2.5)

q
Sg(z) = 2 rx(n)z™2
a=—q

q q
- 3 S mEa
n=s—q k=0

q Q
= } by 27k 2 by (2.6)

[
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Since the finite power series S;(z) has complex conjugate coefficieats (i.e.,
rg(-n) = ;x(n)). it follows that the zeroes of this power series must ocour
in reciprocal pairs. VWith this in mind, it is therefore always possible to
factor the power spectral demsity function as

S¢(z) = a2 f[ (1-z42™1) (1-3y2) 2.7
k=

where a is a real scalar. Upon comparing expressions (2.6) and (2.7), it is
apparent that

q q
} by zk = ¢ n (1-24z71) (2.8)
k=0 k=1

Thus, the required by parameter idenmtification is achieved by carrying out
the right side multiplications in expression (2.8) and then equating
coefficients of equal powers of z-k, The most critical step of this
identification procedure is the factorization of the known power series S;(z)
as given in equation (2.7).

One point of caution should be raised in following this approsch. It
arises due to the fact that although the factorization of Sz(z) into its 2q
first order product terms is unique, the decomposition (2.7) is certainly
not. This is a direct consequence of the appearance of the roots of S;y(z) in
reciprocal pairs. Thus, the term (1-23:~1) may be replaced by (1-z3~1z71) ia
expression (2.8) without destroying the required strusture (2.6). This
replacement, however, will in general lead to a differeat set of by
parameters. Since there are typically q different first order reciprooal
pairs in the factorization (2.7), it then follows that there are 29 different
by parameter sets which are compatable with the autocorrelation identity
(2.5). The one normally chosen corresponds to the so—called minimum delay
seleotion in which the zx roots used in expression (2.8) are selected so that

they all have magnitudes less than or equal to onme,
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AR Time Series

The timo serios {x(n)} is said to be an autoregressive (AR) process of
order p if it is generated according to the recursive relationship

?
x(a) + ) ap x(a-k) = boe(a) (2.9)
k=1

where {e(n))} is the aforementioned normalized white noise process. The
Yule-Walker equations (2.3) indicate that the AR(p) autocorrelation elements
are related by

P
2
Tx(n) + 2 ax rx(n-k) = lbal :;10 (2.10)
k=1

vhere use of the facts that h(0) = b, and h(n) = 0 for n < 0 have been made.

In order to effect a direct procedure for identifying the AR(p) model’s
ptl parsmeters 23, 83, ..., ap, bo which best represent the set of
autocorrelation lag values (2.1), one may evaluate the first p+l of the
governing Yule—-Walker equations, This evaluation whem put into a matrix
format takes the form

p— — —— z—
‘8(1) rx( o) ¢ o o rx(-p"'l) a1 ]
. . « o o . .2 - 0 (2.11‘)
| rx(p)

BV P




or more compactly as
Rg=Ivl? gy (2.110)
In this expression, R is the (p+1)x(p+l) AR sutocorrelation matrix whose
olements are given by
R(1,j) = ry(i-j) 1£i[{pH1 (2.12)
1{j<sr11

8 is the (p+1)xl autoregressive parameter vector with first compoment equal

to one, that is

a=[1,81, a3, eeus 2pl’ (2.13)
and 91 is the (p+1)xl standard basis vector whose eclements are all zero
except for its first which is one. The required parameter ideantificatiom is
then obtained upon solving this system of p+l linear equations ian the p+l
unknowas, Conceptually, this solution may be effeoted by performing the
following computation

PN N EE = W% (2.14)
in which the normalizing coefficient b, is selected so that the first
component of a is one as required in expressiom (2.13)., In this solution
procedure, we are tacitly assuming the invertibility of the autocorrelation 1
matrix R. If matrix R is singular, however, this almost always implies that
the underlying time serios is an autoregressive prdcoss of order less than p.
In this case, it will be necessary to decrease the order until R becomes
iavertible.

Upon examination of expression (2.11), it is seenm that the resultant

¢
4
3
L]
)
i
X
t

AR(p) model parsmeters are totally dependent on the first p+l given
autocorrelation lags £x(0), £3(1), ..., rx(p). Although the associated model
will have an autocorrelation behavior which perfectly matches these first p+l
lags, it may provide a very poor representation for the reraining given j'
autocorrelation lags ry(p+l), rz(p+2), ..., rg(s) (which were not used in the
parametor identification), In order to provide a represeation for these

higher lags by the procedure here taken, it may be necessary to increase the
AR model order to s (i.e,, p=s). In many appliocations, however, the
underlying goal will be that of providing an AR model of relatively low order
(i.0., p<<(s) which will adequately —<represrat the entire set of
sutocorrelation 1lags. A procedure for achieving this objective will be
shortly given., Before considering this most relevant objective, let us first
outline an elegant method for solving the system of linsar equations (2.11).




LEVINSON-DURBIN ALGORITHM: Although the solution procedure as embodied
in expression (2.14) will result in the desired parameter ideantification, the
evaluation of r1 will entail on the order of p3 multiplication and addition
calculations (i.e., o(p3)) if standard procedures such as Gaussiaa
elimination are used. Fortumately, it is possible to take advantage of the
fact that the autocorrelation matrix R is both complex conjugate symmetric
(i.e., R(1i,§) = R(j,1)) and Toeplitz (i.s., R(3,5) = R(j41,j+1)) so as to ’]
effect a computationally efficient solution procedurs. This method was
developed by Levinson and is commonly referred to as the LeviasomDurbia
algorithm [24],[43]. 1In this approach, ome solves the linsar system of
equations (2.11) as the AR order parameter p is sequenced through the values

Airo e o ARt SRS S

1, 2, 3, +.es Py where py designates some as yet unknown maximum AR order.
In this sequencing scheme, Levinson showed that the parameters for the kth
order AR model solutiom which are designated by

11“)- lz(k). vees (8, bo (k) (2.15)
are related to the (k-1)th order AR model solution as outlined in Table
2.1. A brief description of this systematic algorithm will now be

given.

o v

Step 1 &y (1) = /a0 (2.168)
6o 1% = 11 = 183 V1% £00) (2.160)

[UEGASIRRRE R

Step 2 For k=2,3,4, ...

r e

k-1
- 12
a® = - m ¢ ) D w7,V (2.17a)
=1
- k-1
o (B - (D) (B .i_i ) 1(igx (2.170)
)2 -
15 ™ 1% = 11 - 1™ 1211p, &1 (2.170)

! Table 2.1, Levinson-Durbin Algorithm for
Recursively Solving Expression (2.11)

17




- e =

-

If one were to solve the linoar system of equations (2.11) for the order
choice p = 1, it would be found that the required first order AR parsmeters
(with superscript (1) appended) are given in step 1 of Table 2.1. Upon
setting p = 2 in expression (2.11), a moderate amount of algebraic
manipulation will reveal the validity of the solution as given in Step 2 of
Table 2.1 with k = 2 (with superscript (2) appended). Levinson proved that
in following the systematic procedure of Table 2.1, the solutions to the
Yule~Walker equation (2.11) for order selections
p =1, 2, 3, ... are sequentially obtained. Moreover, the number of
multiplication (and addition) computations required in generating the kth AR
order parameters from the k-13t AR order parameters (i.e., Step 2) is seen to
be k. Thus, the computational complexity of the Levinson—Durbin algoritha
for gemerating a pth order AR model (and all lower order models as a
byproduct) is found to be o(p2). This is a considerable savings over the
computational complexity of o(p3) required in solving expression (2.11) using
standard techniques.

The Levinson-Durbin algorithm provides not oaly a computationally

efficient method for gemerating the AR parameters, but, it also yields an

effective AR model order determination procedure. Specifically, let it be
assumed that the autocorrelation lags used in expression (2.11) correspond to
an AR(p) process, If the Levinson~Durbin algorithm were applied to this
autocorrelation lag information, by the very nature of this procedure, the AR
process parameters would be perfectly identified at the pth iteration (i.e.,
ak(P) = ay k=1, 2, ..., p and Ibo(l’)l2 = [bg2l). Moreover, if this
recursion were continued beyond p, it would be found that a; = a3 for 1
1<p 8. =0 for p1 1 <k and, 16,17 = b, 1%, This is @ direot
consequence of the fact that ap...l(l""l-) must be zero as is evident from
expression (2.17a)., From these observations, it is therefore appareat that
the nonchanging of the parmmeters Il",(k)l2 provides a means for order
detormination,

When the autocorrelation lags used do not correspond to an AR process,
there will be no value of k for which [b, k | assumes a ocomstant value
thereafter., Since the specific high order coefficients ak(k) will always
have a magnitude which never eoxceeds ome [5) and [14], bhowever, it is
apparent from expression (2.17¢) that Ibo(k)lz < Ibo(k-nlz for all k ) 1,
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Thus, the parameters |b°(k)|z form a monotonically nonincreasing sequence and
this factor can be used in model order determination. In particular, the
parsmeter h),,(k)l2 may be identified with a ’prediction error' associated
with a kth order limear predictor. Once this prediction error becomes
satisfactorily small, the associated AR(p) model will form am acceptably good
approximation to the given autocorrelation sequence (e.g., see reof. [31]).
The meaning of ’satisfactorily small’ is subjective and will depend on the |
particular application being considered and empirically obtained experience.

T

The parameters ak(k) for k = 1, 2, 3, ... are also referred to as
'reflection coefficients’ and are oftem denoted by oy = ‘k(k). These
reflection coefficients have the property that for the truncated sequence

W s T VT

rz(0), 23(1), ..., Tx(p) to be a valid segment of an autocorrelation
sequence, it is necessary and sufficient that |ck| £1 fork=1,2, ..., P

Moreover, the transfer function

P
Ap(z) = ) agzm (2.18)
=0

associated with the solutiom to expression (2.11) will have all of its roots
on or inside the unit circle if and only if the l°k| {1 for k=1,2, .., P.

-y

It is noteworthy that the system of equations (2.11) also arise when
solving the optimum one-step predictor problem, or, when using the maximum

L et it

entropy principle [31]  1In the ome-step predictor problem, it is desired to
select the p predictor parameters ay go that the prediction

) 4
x(n) = - } ax x(n-k) (2.19)
k=1

best approximates x(n) in the sense of minimizing the mean squared prediction
error E{lx(n)-x(n)|2})., One may readily show that the optimum prediction

2
parsmeters are found by solving expression (2.11) inm which Ibo!® plays the
role of the minimum mean squared prediction error, On the other hand, when

applying the maximum entropy primciple, it is tacitly assumed that the time
series {x(n)) is a zero mean, Gaussian process. The objective is to thea
find s power spectral demsity function Sy(e%) which will mazimize the
: entropy measure

| ) R
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[ Aa t8ge30) 1 a0 (2.20)
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subject to the coastraint that this function will be consistent with the
given set of p+l autocorrelatiom lags ryx(0), rz(1), ..., rz(p) through the
Fourier transform pair relationship (1.3). It is readily shown that the
maximizing power spectral density functiom is an AR process of order p whose
parametors are given by expression (2.11).

ARNA Time Serjes
The time series {x(n)} is said to be an autoregressive-moving average
(ARMA) process of order (p,q) if it is generated (or cam be modeled)

according to the recursive relationship

P q
x(n) + } 8 x(n-k) = 2 by e(n-k) (2.21)
k=1 k=0

in which the excitation sequence (e(n)} is the aforementioned normalized
white moise process. Our task is to then determine values for the ay and by
parameters of this model which are most compatable with the given
autocorrelation lags (2.1). The mechanism for measuring this compatability
will be the Yule-Walker equations (2.3) which characterize the above ARMA
model, Upon examination of these equations, it is seen that the ARMA
parameters appear in a nonlinear fashion through the unit—-impulse response
h(a). If the best least squares modeling is desired, it is then found that
the generation of the optimal ay, by parsmeters involves the least mean
square solution of the highly nomlinesar Yule—Walker eoquatioms, This will
almost always necessitate the use of computationally burdenmsome nomlinear
programming algorithms with the attendant difficulty of initial parsmeter
value selection, and, the possibilities of convergemce to a local extrema or
SVen NOBCONVErgence.

A considerable easing in computational requirements may be achieved if
we allow ourselves the luxury of ovaluating the ay and by parsmeters
sepazrately. By using this approach, it will be possible to provide for a
linear solution procedure for the ay parameters. Although this approach will




be suboptimal in nature, it oftem provides for a near optimal modeling. The
mechanism for this separate parsmeter evaluation is obtained upon examining
the Yule—Walker equations (2.3) which characterizes the ARMA model (2.21).
If this model is take to be causal, it follows that the Yule—Walker equations
assume a particularly simple form for indices n > q, that is

p

} 8k ry(nk) =0  for n ) g+l (2.22)
k=0

We shall refer to this particular subset of the Yule-Walker equations as the
extende vle—W r equations, The obvious attractivenmess of these
equations lies in the fact that they are linear in the ay parameters.

To determine the ay autoregressive parameters which sre most compatable
with the given set of autocorrelation lags (2.21), we could adopt the
approach that characterized extended Yule—Walker equation AR and ARMA
modeling methods up to as recently as three years ago (e.g., see refs
[261,0281,0351,[38]1). This would entail evaluating the first p extended
Yule—VWalker equations (i.e., g+l { n £ q+p) and then solving the resultant
system of p linear equations in the p auto-regressive parameters, Although
this approach is computationally attractive, it suffers from the obvious
drawback that only a subset of the given autocorrelation lags (2.1) are being
used in fixing the ay parameters (i.e., rx(n) for g-p < n £ q+p). To achieve
s ARMA model which better represents the emtire set of autocorrelation lags
(2.1), it is clearly beneficial to use more than the minimal number (i.e., p)
of extended Yule-Walker equation evaluations. The a; parameters which yield
8 least squares fit to this overdetermined set of lirnear equations is thea
found using a straightforward procedure to be shortly given.

This overdetermined extended Yule-Walker equation approach to ARMA
spoctral estimation was proposed by the author in 1979 [15]. From
historical perspective, it is to be noted that the idea of using an extended
set of model evaluations forms a fundamental concept in system parameter
estimation theory (e.g., see refs. [45]1,[59]). Moreover, the approach here
taken can be interpreted as being a gemeralized application of the Prony
procedure in which the antocorrelation lags play the role of the data., With
these thoughts in mind, there exists a rich source of evidence justifyiag the
use of an overdetermined sot of
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extonded Yule-Walker equations for estimsting the ARMA model’s autoregressive
parameters.

In this overdetermined modeling approach, the exteanded Yule—Walker
equations (2.22) aro evaluated for t distinct values of n satisfying n ) q+l.
To effect the desired overdeterminacy, the integer t has to be selected to at
least eoqual p+l although lisrger values will typically yield better model

representations. To illustrate this overdetermined approach, let.us consider
the first t extended Yulo—Walker equatioms (2.22) indexed by g+l { m { g+t.
This particular Yule-Walker equation evaluation gives rise to the following
overdetermined system of t linear equations in the p autoregressive parameter
unknownsl

= "r -' -
rz(q+l) (@) . rx(qp+l) 1 0
b §
rx(q+2) rx(q+1) see tx(rﬁz) ‘2 0
. - seoe > - = - (2.23.)
L] L] e e L 4 Lﬁ *
rx(q-i't) rx(q'*t-l) cee rx(lI"P“'t) E 0

or more compactly as
R am=p (2.23b)
denotes the txl zero vector, Ry is the tx(p+l)
ARMA sutocorrelation matrix with Toeplitz type structure having elements
R1(i,j) = rg(q+l+i-j) 1 it (2.24)
1£jsp"l

In this latter expression, o

1Ia ocertain applications, it may be desirable to use an other than
contiguous set of exteanded Yule-Walker equation evaluations,
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and § is the (p+l) autoregressive parameter vector whose first compoment is
required to be ome A

a=1[1, a3, a3, .ces 8pl’ (2.25)

Examination of relationships (2.23) reveals that the ARMA model’s
autoregressive parameters are obtained upon solving this system of ¢
overdetermined (assuming t > p) linear equations. Due to the overdetermined
nature of these oequation, the fundamental question as to whether a solutiom
exists naturally arises. The following theorem provides an answer to this
quostion and is a direct result of the Yule—Walker equations which governs
ARNA processes.

Theorem 2.1: If the autocorrelation lag entires used in matrix Ry of
expression (2.23) correspond to those of an ARMA (p3,q;) process, thea
the rank of Ry is pj provided that p 2 p1, q 2 q1.

With this theorem in mind, the existence of a solution to relationship (2.23)
will be dependent on the rank of the autocorrelation matrix Ry, We shall now

consider separately the cases in which R;y has full rank and less than full
rank.

Rank [R;] ¢ p: VWhen the rank of matrix Ry has less than full ramk, a
nontrival autoregressive parsmeteric vector solution g will be assured. An

interesting algebraic characterization of this solution may be cbtained upon
premul tiplying both sides of relationship (2.23) by the complex conjuage
transpose of R; as demoted by R; to yield

RiR; 2 = o (2.26)
Upon examination of this expression, it is oclear thut the required
autoregressive parameter vector may be also identified with a properly
normalized eigenvector (i.e., its first component is ome) associated with a
zero eigeavalue of the (p+1)x(p+l) matrixz RfR;. As such, we may then use
standard eigenvector—eigenvalus routines when finding the required ARMA model

autoregressive parameters,

Rank [Ry] = p+l: In many cases of interest, however, it will be fouad
that the autocorrelation matrix Ry will have full rank. This will ocour
whenever the autocorrelation lag entries used are associated with either




nonrational random time series, an MA process, or, with a higher order ARMA
rational process. Since Ry has full rank, there then will not exist &
nontrivial solution to relationship (2.23). Nonetheless, we still wish to
determine an ARNA model which ’best fits’ these overdetermined extended
Yule—Walker equations. Namely, we seek a nonzero autoregressive parameter
vector & so that Rys most closely equals the required ideal zero vector as
spocified in (2.23). Although a variety of procedures may be used for
accomplishing this selection, the following two sapproaches typify many
spectral estimation slgorithms. _

(1) In the first selection procedure, it is desired to find an
autoregressive parameter vector lying on the unit hypersphere which will
minimize the Euclidean norm of Rja. This entails solving the following
contrained optimization probleam

min ;‘ll‘xl a

2% =1

Using standard Lagrange multiplier comncepts, it is readily shown that the
sclution to this optimization problem is obtained by selecting that
orthonormal eigenvector of the positive definite Hermetian matrix ‘1“1

sssociated with its minimum eigenvalue. If x; ocorresponds to that
orthonormal eigenvector (i.e., ll‘ll‘k = AyZy with Ax € Agey and ‘;‘k =1),
the required autoregressive parameter vector with first component of ome if
obtained by the normalization.

1
10 - 1 (2.27) |
x1(1) ;

where x3(1) denotes the first compoment of xj. This autoregrossive parameter
vector selection procedure characterizes many spectral algorithms which are
varients of the Pisarenko method [55] and is gonerally not suitable for aa
efficient computational solutioa,

(i1) In the second selection procedure, we wish to miaimize the
Euclidean norm of Ryg over all (p+1)xl veotors g with first compomeats equal
to one, that is 4




\
}

E i min _g'l;llé

i ] a(1l)=1

[

[ Appealing to the Lagrange multiplier approach agaim, it is found that the
| solution to this constrained optimization problem is givea by solving the
} following linear system of equations

RIR 20 = ag, (2.28)

where the normalizing constant a is selected so that the first component of

29 is one,
In using either of the above two procedures, we are seeking to bdest

satisfy theoretical relationship (2.23) in the least squares semse subject to : i
appropriate constraintsl, The particular application at hand
dictates which autoregressive parameter vector selection procedure provides
] the best performance, It has been the author’s experience that the selection
(2.27) has often provided reasonable modeling (also see ref. [12]). In terms
of computational efficiency, however, the linmear selection (2.28) emjoys a
4 clear superiority due to the availability of efficient adaptive' algorithms as
outlined in Section X. With this in mind, we shall mainly focus our
attention on the linear selection (2.28).

In summary, the ARMA(p,q) model associated with a givea set of

P

autoregressive lags entails an examination of the matrix Ry, If this matrix
is not of full rank, the required exact autoregressive parsmeter vector will
be given by solving expression (2.26)., On the other hand, when the matrix

has full rank, an appropriate autoregressive parameter vector may be achieved
by solving either expression (2.27) or (2.28). It is important to appreciate
the fact that these ARMA results are applicable to the special AR process in
which case we simply enter q=0 when forming the ARMA auntocorrelation matrix
Ry.

11¢ is possible to ;omulizi the constraiants to be & gquadratic surface
(giving rise to a generalized eigenvector solution) or a hyperplane, | -
respeotively [10].




Moving Average Parameters
In order to complete the ARMA modeling, it is necessary to detec.mine the
model’s associated moving average parameters, There are a variety of
procedures for achieving this objective. We shall present two such
proocedures of which the first is the one most often found in the literature
while the second possesses a desirable efficient computational
implementation,

(i) In the first procedure, ome conceptually applies the time series
{x(n)} to the ptk order momrecursive filter with transfer fumctioa Ap(x)
whose coefficients correspond to the autoregressive parameters obtained upon
solving either expressioa (2.26), (2.27) or (2.28). This filtering produces

the so—called gesidual time series as specified by

P
s(n) = } ayx (n-m) (2.29)
=0

This filtering causes the residual time series to be a moving average process
of order q with power spectral demsity functiom Il!q(e-"")l2 as is made evident
from Figure 2.2, This of course presumes that {x(n)} corresponds to an ARNA
processor of order (p,q) or less. A simple analysis indicates that the
length 2q+l autocorrelation sequence of this residual time series may be

computed according to

(p »
2 2 apay ry(n+m-k) -q¢{nq
rq(n) = {¥0 =0 (2.30)
{ 0 otherwise

Using these MA(q) autocorrelation lags, it follows from expression (2.5) that

the unknown by parsmeters must be such that

q
ry(a) = ) by by ~q¢n<q (2.31) ]
k=0

A speotral factorization along the lines mentioned in this section’s MA time

sories subsection will then yield the desired by parameters.




e(a) | Da(2) x(a) Ap(2) s(a)
Ap(2)

Figure 2.2. Generation of residual time series.

(ii) If computational requirements are of vital concern, the technique
to be now outlined is particularly efficieat [15],[16]. It utilizes the
Fourier transform of the causal part of the autocorrelation sequence

- , 4

D(e3®) = } rya)e-ium (2.32)

o=}

The underlying power spectral density function may be directly determined
from this Fourier transform according to

Sx(ei®) = ry(0) + 2Re{D(ei®)} (2.33)
A comparison of this expression with relationship (1.13) reveals that the

transform D(ej®) must be of the form

c1e”i®4gpei2¢ + ., + cpemipw

D(ej®) =
1+l1o"j. + ... + ;pg"jp“
C(ojm)
Ap(eiw)

where we are tacitly asssuming that the moving average order is not larger
than the sutoregressive order (i.e., q { p).

To determine the required o, coefficients in expression (2.34), we will
first compute the first s impulse response elements of the filter H(ej®w) =
1/A,(o.10). This will entail using the following relationship

P
h(n) = - } axh(n-k) 1{n(s (2.35)
k=1
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in which h(0) = 1 and h(n) = 0 for n ¢ 0 are used to initiate the recursion,
We next use the time domain equivalency of relationship (2.34) to comclude
that

(8(0) 0 o . . . 0 7 ey ] £ (1) ]
h(l) h‘o) o . . . o cz rx(Z)
. . . = ‘& (2.36‘)
h(p-1) h(p-2) . . - . bh(0) ch .
Lh( s) hi(s-1) . . . « h(s—=p+1 )_J b1',( s )_
or
Hg=¢z (2.36b)

In general, the overdetermined system of equations (2.36) will not have
s solution unless the autocorrelation elements ry(n) are associated with an
ARMA process of order (p,p) or lower. Assuming this not to be the case, we
could select the vector ¢ 30 as to provide a least squares solution to
expression (2.36). This would take the form of solving the coansistent system
of linear equations

¢ = [H*H]"1p% (2.37)

In order to achieve the aforementionmed eofficient ocomputationmal
algorithm, the parameter s may be taken to be p which remders the following
straightforward method for evaluating the on

1
Op = § axry(n~k) 1{ngp (2.38)
k=0

This is basically the approach taken in referemces [15] and [16]. 1In using

expression (2.38) for evaluating the c,, we are trading off performance for
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computational efficiency. It has been the author’s experience that the

spectral estimates achieved upon using the least squares fit (2.37) do not
typically provide a superior performance to those given by the simpler
relationship (2.38). In any oase, once the o, parameters have been
determined, the Fourier transform (2.34) is used in expression (2.33) to
effect the required power spectral density model., Moreover, if it is desired

to evaluate the by parameters, we can use the identity

[Bg(ed®) 12 = Ay(ed*®) Tled®)+ X, (o3*)C(eI®) +xg(0) lap(ei®) 12 (2.39)

and a spectral factorization to achieve this objective.

In this section, we have outlined convemient procedures for gemerating
MA, AR and ARMA spectral models when perfect autocorrelation lag ianformation
is available. The principle steps of these procedures are summarized in
Table 2.2. Although these results are of primarily theoretical interest, we
will subsequently adapt them to evolve effective ratiomal spectral estimation
methods for the more practical case where only raw time series observations

are used in the modeling.

)




MA Model
q
Sx(ed®) = ) w(a) zy(n) o~jum (1.6)
e—q
AR Model

(i) Form the (p+1)x(p+l) AR autocorrelation matrix R using expression
(2.12)

(i1) Solve  Rg = Ib,1% o (2.11)
where parameter b, is seloected so that the first component of g is
one,

| v ’
o
(1ii) 8;(e3%) =
|1+a1 DL R A
ARNMA Model
(i) Form the tx(p+l) ARMA autocorrelation matrix Ry using expression

(2.24)

(i1) (a) If Rank (By"Ry) ¢ p+1  then solve

Ry*Ry a = o (2.23)

(b) If Rank (R1.21) = p+l then either solve

R;°R; 2 =a o (2.28)
where a is selected so that first component of g is ome.
or
use the minimum eigenvalue—eigenvector yielding selection
(2027) L
) P
(iii) =q(n) = } 2 ayig ry(n+mr-k) 0<nq (2.32)
k=0 ==0
q
2 Tq(n)e I%8
(iv) Sx(oj") = e

[1 +ag07d® 4 -,.'-”"12

Table 2.2. Rational spectral model techaniques employing
exact autocorrelation lag information,
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III. Sinusoids in White Noise Example

The procedure as developed in the preceding section is applicable to the
task of generating rational models for the gemneral class of wide—sense
stationary time series. In order to demonstrate the relative offectiveness
of MA, AR, and ARMA modeling, the oclassical problem of the detection and
frequoncy identification of the sinusoids in white noise case will now be
considered. Although this does represent a very narrow application of
rational spectral estimation techniques, it provides a meaningful basis for
understanding the relative performance capabilities of MA, AR, ARMNA models.
In particular, the time series being now examined is taken to be ocomposed of
the sum of m real sinusoids in additive noise as specified by

a
z(n) = 2 Ay sin [2afyn + ex] + w(n) (3.1)
k=1

in which the ey are independent, uniformly distributed random variables on
the interval [-m,n] and w(n) is a zero mean, variance o2 white noise process.
It is recalled that the problem of detecting sinusoids in noise origimally
gave rise to spectrsl estimation theory. The periodogram method was
developed for this very purpose by Schuster ia 1898 [58].

The task at hand is to generate MA, AR, and, ARNA models from the
sutocorrelation values associated with this time series using the procedures
outlined in the previous section, It is a simple matter to show that the

autocorrelation sequence characterizing time series (3.1) is given by

n
2
rg(n) = } 0.5 Ay cos [2nfyn] + o28(an) (3.2)
k=1

in which 8(n) demotes the unit-impule (Kronecker delta) sequence. The power
spectral deasity function associated with this process is composed of 2am
dirsc delta impulses of amplitude 0.5 Ai located at frequencies +fy riding on
top of a comstant value o2, As such, this discoantinuous power spectral
density fumction may 20t de associated with a finite order MNA, AR, or ARMA

process.
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Although the autocorrelation sequence (3.2) is not compatable with a
finite order ARMA model, it is readily shown that this sequence will satisfy
the following homogeneous relationships

2m

2 8y ry(n~k) = 0 for n) 2m (3.3)
k=0

where a5 = 1, The ax parameters required in this expression are obtained by
equating coefficients of the following polynomial equivalency

2=

Mg(z) = } ap 270
n=0

= TT [1-2 =1 cos(2nfy) + z-2] (3.4)
k=1

where the zeroes of this polynomial (i.e., oti2nfx) are identified with the
frequencies of the time series’ sinusoids (e.g., see refs, [10],[321,[55]).

Upon comparison of relatiomships (3.3) and (2.22), it might be
incorrectly infered that the autocorrelation sequence (3.2) would be
associated with an ARMA process of order (2m,2m). Upon examination of the
Yule—VWalker equatioms for indicies 0 ( n  2m, however, it will be found that
an exact correspondence does not result, This simply reflects the fact that
the time series (3.1) does not arise from exciting a linear ARMA operator
with white noise. Nonetheless, due to the identical forms of equations
(2.22) and (3.3), we may still use the ARMA modeling sutoregressive parameter
procedure as outlined in Sectionm II to identify the 2m parsmeters ay. These
parsmeters would be then in turm inserted into relatiomship (3.4) to idemtify
the frequency parameters fy upon factorization of the polynomial Agn(z).
This spectral behavior can be convesiently displayed in a plot of
i11/A24(ei%) | versus w.

Once the f; frequency parameters have been determined, the associated Ax
amplitude parameters may be obtained upon evaluating expression (3.2) over
any set of m or more indices satisfying n ) 1. With this in mind, let us
evaluate this expression for the ocontiguous indices 1 { n { v where the




integer v ) m. This is found to yield the following overdetermined (if vim)
system of consistent linear equations in the Ay unknowns

- - v 1.2
(1) cos(2nfy) cos(2xfy) oo cos(2nty) Ay/ 2-]
2
T2(2) cos(4nfy) cos(4xf3) ‘o cos(4nty) Ay/2
- = L 4 L] (3 .s)
2
. . A2
| T2 (V) cos(2vnfy) cos(2vnfy) ces cos(2nvey) |

of equivalently as

where p is the so—called mxl power vector with elements Ai/z-. If the integer

parameter v is selected to be larger than or equal to m, the least square

approximate solution to the overdetermining equations (3.6) is given by
p=lccrteg (3.7

where C’ designates the transpose of matrix C. In the case of pezrfect
sutocorrelation knowledge, we normally set v = m thereby giving the solution
R = C"lg,. In the more practical case in which only raw time series
observations are given for the estimate, however, a desirable degree of
parameter smoothing is achieved by selecting v ) m.

Although the sinusoids in white mnoise time series (3.1) is mnot
compatable with an AR model, AR models have also beem successfully employed
in analyzing such time series., Depending on the underlying signal to noise

ratios

A
;‘; 1{k{nm

the desired detection and frequency estimation will require that the AR order
parsseter p be made sigpificatly larger than 2m. Variants of the Pisarenko
method [551, and, the SVD approach of Tufts and Kumaresan [42],[61] typically
produce satisfactory performance on the sinusoids in white noise case. As we
will uluttaﬁ in Section VIII, the approach taken in this paper will also




produce exceptional performance when an SVD adaption of the ARMA modeling
method herein presented is made.

In o 'i
It is possible to apply the concept of using an overdetermined system of
model evaluations for achieving high quality alternative estimates for the

frequency parameters appearing in expression (3.1). This will make use of
the observation that homogeneous relationship (3.3) holds for all values of n

provided that there is no white noise present (i.e., 02 = 0), Under this
restriction, an evaluation of expression (3.2) with 02 = Q0 over the indices
-t + 2p { a2 { t (in which p = 2m) is found to result in the following
symmetrical relationship

[2(~t+p) ex(-t+p-1) ... rx(-t) | [1 ] To]
rx(-t+p+l) rx(-t+p) « o « rz(-t+l) a1 0
‘ R (3.8a) i
. ' . | &P | .
4
rx(t) rx(t-l) s o tx(t-P) _J o-‘
or
Ryam=eo (3.8b)

in which t is selected so that t > 3m/2 thereby emsuring an overdetermined

system of homogeneous relationships.

If the autocorrelation lag eantries of expression (3.8) correspond to
(3.2) with o2 = 0, it them follows that the overdetermined system of
equations (3.8) will have a unique solution for the ay coefficients. This

solution can then be incorporated into equation (3.4) to obtain estimates for
the frequency f; parameters, In the additive noise ocase o2 ¢ 0, however,
this system of equations will genmerally not have a solution. Since the o2
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torm appears in omnly p+l out of the (2t-p+l)x(p+l) entries of matrix R,
(i.e.,, the rz(0) entries), it can be argued that so long as t))p, the effect
of the additive noise will be minimal., Based on this premise, it is natural
to then seek a vector & such that this incomsistent system of linear
equations is best satisfied in a least squares sense., The required least
squares solution is then given by solving the system of equations

R VR, a=agg (3.9)
in which a is a mnormalizing scalar selected to eonsure that the first
component of a is one, The nonnegative diagonal matrix W is typically
selected to be equal to the identity matrix. As we will see in Section VIII,
the solutions obtained by using expression (3.9) often provide exceptional
estimates so long as t)>p. A paper in preparation will further refine this

new approach,

Numerical Example

In order to illustrate the effectiveness of the three rational models in
resolving sinusoids embedded in white noise, we shall now consider the
spocific time series

x(n) = sin(0.4mn) + sin(0.43mn) + w(n) (3.10)
The white noise series {w(n)} will be taken to have a variance of 0.5 thereby
creating a zero dB signal-to—noise ratio (SNR) enviromment. Accordimg to
relationship (3.2), the autocorrelation sequence associated with this time
series is specified by

rg(n) = 0.5 cos(0.4xn) + 0.5 cos(0,43m) + 0.58(n) (3.11)
We shall now use these autocorrelation lags along with the comcepts developed
in Section II to generate appropriate MA, AR and ARMA models, A brief
discussion of the resultant modeling performances ian this idealistic
situation will now be given.

MA Models: When using the classical spectral modeling expression

q
Sy(eiw) = 2 fx(n) e~jun (3.12)

r=—q




we are in offect invoking a MA(q) model. Plots of this expression with
entries (3.11) for model order selections of q = 32 and q = 64 are shown in
Figure 3.1 over the range of normalized frequencies 0 ( f { 0.5. From these
rosults, it is appareant that a resolution of the two equal amplitude
sinusoids was not achieved for a thirty second order MA model, bdut, was
achieved for a sixty fourth order MA model. Thus, am artificially high order
MA model was required in order to resolve the two sinusoids when exact
autocorrelation lags were used. This example mnicely demonstrates the
distortions which can result when invoking a MA model if the underlying
assumption that ry(n) = 0 for n > q thereby implied is not satisfied (or
approximately satisfied). Clearly, the nondamped nature of the
autocorrelation sequence (3.2) behavior indicates that the MA modeling of a
time series composed of sinusoids in white noise can be inappropriate unless
a sufficiently large selection of the MA model order q is made.

AR Models: VWe next used the same autocorrelation lag information (3.11)
to genmerate AR models of order p = 20 and p = 24 using expression (2.11).
The resultant spectral estimates IIIAP(.ju)Iz are shown in Figure 3.2a and b
for these two model order choices. It is apparent that the tweatieth order
model was unadble to resolve the two sinusoids while the twenty—fourth was
just able to achieve the resolution, Since the specific autocorrelation lags
Tx(n) for 0 { a  p were required for generating an AR(p) model, it is
apparent that fewer autocorrelation lags were needed to resolve the two
sinusoids when using an AR(24) model in comparison to the MA model. This
simply gives oredance to the previously made suggestion that AR models
provide a more effective instrument for representing peak like spectra than
are MA models.

In order to illustrate the effect of using more than the minimal number
of extended Yule—Walker equations (i.e.,t > p) when generating an AR model,
wo next used the ARNA modeling eoquations (2.23) with parsmeters p~i0, ¢=0,
and t=100. The AR(10) model which results upon solving equations (2.23) for
this choice of order parsmeters has a spectral behavior as depicted in Figure
3.20. This AR(10) spectral estimate is seen to be significantly better than
that achieved by the higher order AR(24) estimate. Clearly, the process of
using 100 (i.e., t=100) extended Yule-Walker equation evaluations instead of
the minimal number 10 has produced this significant improvement. This
improvement is due to the fact that only the first four of the one hundred




extended Yule—Walker equation evaluations are in error due to the impositioam

of an improper AR model (see equation (3.3)). By increasing t beyond p, the
effect has been to dilute the negative impact of the erromeous first four
Yule—Walker equations on the model parsmeters (i.e., four improper equations
snd 96 appropriate equations). The reader is urged to fully understand the
implications of this result in a more broadly based coatext.

ARMA Model: Ve next used the given autocorrelation lag informatiom
(3.11) to generate an ARMA model of order p = 4 by appealing to expression
(2.23). Ve here select the variable t to be equal to its minimal value of
four, and, in accordance with this section’s discussion take q = 4, The
resul tant ARMA based spectral model 1/|A4(e.’i"')|2 without the MA component is
plotted in Figure 3.3. The two sinusoids are nicely resolved and when the
fourth order polynomial M(ej“) was factored, it was found to have its four
roots on the unmit circle at exJ27fx for k = 1,2 in which f; = 0.2 and f; =
0.215. This should not be surprising since it was previously shown in this
seotion that an ARMA type model is perfectly compatible with a sinusoids in
white noise time series (MA and AR models are not compatible), It is
noteworthy that only the autocorrelation lags r;(a) for 1 { n ( 8 were
required in generating the spectral model depicted in Figure 3.3.

Alternative Method: As a final procedure, we used the alternmative
method as represented by relationship (3.9) in which the parameters were
taken to be p=10 and t=50. Using these parameoters along with the theoretical
autocorrelation 1lag entries (3.11) a plot of the resultant estimate
1/1A19(ei®)|2 is shown in Figure 3.4. The two sinusoids are resolved with
well defined peaks, and, the spectral estimates are superior to those
achieved by the MA and AR model results but inferior to the ARMA model.

37

’
v—— . ——— - ————y— ==

P e W T Vg YTV oW T




8
S (a) MA(32)
8
— y
[~-]
A
» 8
T o
2 |
2 g ?
a w !
‘000 .10 0.20 0.30 0.40  0.50 4
|
]
8 (b) MA(64)
2-
C) 8
~ a1
sl
2 g
-G °¢4 :
S !
Q 3
8 |
H
‘0.00 0.10 0.20 0.30 0.40 0.60

Fig. 3.1 Moving average (MA) spectral
models using expression (1.6)
with w(n) = 1 and exact auto- i
correlation lags (a) q = 32, .
(b) q = 64.




Decibels

Decibels

%

Decibels

8 (a) AR(20)
ol t=20

8

3-4

8' .—W\/\'

o ——

8

@ .

'0.00 o.10 0.20 0.30 0.40 0.50
S (b) AR(24)
9,

" t=24

3

la.

?o.oo c.10 0.20 0.30 0.4 0.50
% (¢) AR(10)
t=100
g
5

Fig. 3.2 Autoregressive (AR) spectral
models usina expression (2.11)
with exact autocorrelation lags
(a) p=t=20, (b) p=t=24,

(¢) p=10, t=100.




N AV RO gepary

3§.00  70.00

Decibels

0.00

g f
w {
? \J \ PP N\ \J g

o.00 00 ¢.20 ¢.30 0.40 0.80

A‘.ﬁ.—l—'m‘ﬂ'ﬂ‘.‘l—t"—'.“ﬁ q

Fig. 3.3 Autoregressive-moving average
(ARMA) spectral models using
expression (2.23) with exact
autocorrelation lags and p=t=4,

e oeaan kU B At ok #7 ARLS W Ait

i

e

3¢ -4
0 — — — - , . — h




-y

Decibels

00

35.00  70.

0.20 0.30 0.40

o,
Q
-
o

Fig. 3.4 Alternative method with
p =10 and t = 50.

P




IV. MA Modeling - Time Series Observations
From a practical viewpoint, the situation in which exact autocorrelation

lag values are given for effecting a spectral estimate almost nover srises.
More typically, the reqaired spectral estimate is to be generated from a
finite set of contiguous time series observations as represented by

x(1), x(2),.00s x(N) (4.1)
In this section, wo will be concermed with achieving MA spectral estimates
from this observation set, The methods to be presented for this purpose are
largely influcmced by the theoreticsl developments found in Section II.

There eoxist two primary MA spectral estimation procedures that have
found favor among users. They are indirect methods based on auntocor—-relation
estimates such as proposed by Blackman and Tukey [8], and, direct methods
based on the Fourier transform of the time series observations and widely
known as the periodogram (or the method of averaged periodograms due to Welch
[64]1). As we will shortly see, the periodogram is a special case of the
Blackman-Tukey approach.

1gckman— roach
In the Blackman-Tukey method, omne first obtains autocorrelation
estimates Qx(n) from the given observation set (4.1). These autocorrelatiom
estimates are them inserted into oxpression (1.2) to effect the required
spectral estimate., For a variety of ressons, it is often bemeficial to
introduce a windowing sequence w(n) to schieve the windowed MNA spectral

estimate of order q

q
S(ejw) = } w(n) ;x(n)e‘j‘ﬂ (4.2)

n=-q

Considerations to be made in selecting the window sequence are well
documented and the reader is referred to referemces [33],(50],[571. Two of
the more popular selections are the rectangular window (i.e., w(n) = 1) and
the Bartlett trisngle window (i.e., w(n) = (1~lal)/(q+1)).

- The standard unbiased and biased autocorrelation estimates are smong the
most popular candidates to be used in the spectral estimate (4.2) (e.g., see
rof, ([33] for a detailed development)., The unbiased estimate achieves the
required auntocorrelation lag estimate acocording to




N

E x(k+n)x(k) -q¢{n q (4.3)
N"Inl k=1

Tz(n) =

where the convention of setting to zero any term x(n) in the summand for
which n & [1,N] is adopted. It is a simple matter to show that B[fx(n)} =
rz(n) thereby establishing the unbiased nature of estimate (4.3). Moreover,
this unbiased estimate is also consistent so long as the order parsmeter q is
finite,

Notwithstanding the obviously attractive statistical properties
possessed by the unbiased estimate (4.3), a number of prominant statisticians
have proposed wusing the standard biased estimate (e.g., see refs,
[33]1,(52],[53].

N
f2a) = ) x(kem)E(R) -4{nq (4.4)
k=1

VWe again adhere to the comvention of setting to zero anmy term x(m) in the
summand for which n ¢ [1,N]. The justification for using the biased estimate
is that it is more stable statistically. It must be noted, however, that the
relative advantages of umbiased vs, biased estimators remains an unsettled
issue, With this in mind, the user is ocauntiomed to base his ultimate
selection on the particular application being considered. This will
undoubtably entail a great deal of empirically based experimentation om the

users part,

Bexiodogram
In the periodogram method, the required spectral estimate is given by

the expression

Sz(ei®) -% u“(o.i.)lz (4.5)

whore Iy(ei®) is the Fourier transform of the time series observatioams, that
is




R ————— e

N-1
IN(ei®w) = 2 z(n+l)e~jun (4.6) J
=0

We here use the subscript N on Xy(ej®) to explicitly demote its dependency om
the observation length parameter., It is readily shown that the periodogram
is identical to the Blackman-Tukey approach when the biased ostimates (4.4)
are used in expression (4.2) with q = N-1 and w(n) = 1.

The primary advantage in using the Periodogram approsch is computationmal
in nature. Specifically, the values of the periodogram at the N discrete set
of uniformly spaced radian frequencies wy = 2xk/N for
0 { k { N-1 is seen to entail evaluation of the emtities

N-1
i 2nk } - 2nkn
In(e” W) 4 x(n+l)e N » 0<k (N1 4.7
b .

These evaluations are readily carried out by use of the N point fast Fourier
transform (FFT) algorithm (e.g., see refs., [501,(57]1). With the FFT
algorithm, the N quantities (4.7) =ay be computed in which the required
number of complex additions and multiplications is on the order of N 10;2}{,

The computational savings accrued in using the FFI algorithm for spectral

estimates is oconsiderable when it is realized that a direct evaluation of
expression (4.7) is seen to entail N2 complex additions and multiplicatioans,
Due to the computational savings acorued in using the FFI implementation of
the periodogram, spectral estimates of long data sequences became feasible
with the FFI's development,

Although the FFT algorithm offers a computationally effi.ieant means for
numerically evaluating the periodogram (4.5), it possesses a potemtially
serions drawback., Specifically, as just suggested, this FFT implementation
| provides s sampled version of the periodogram in which the frequency samples
are separated by 2x/N radians, For many applications of interest, this
sampling may be too coarse in that the detailed continuous frequency behavior
of the periodogrsm (4.5) may be somevhat obscured through the sampling
process. An example of this will be givez iz Seoction VIII, In order to

slleviate this potential difficulty, we may apply the concept of 3zero
padding. This simply eatails the appending of L zeroes to the given set of
time sories observations, that is

e ita it sl




x(1), x(2), «ee, 2(N), 0, 0, +0ou, O (4.8)
L zeroes
where L is a yoet unspecified positive integer. If we were to take the
Fourier transform of this padded time series, we would obtain the same
transform (4.6) and the same periodogram function (4.5). On the other hand,
if we were to take a N+L poiat FFT of this padded time series, the follovinj

more finely spaced samples of the Fourier tramsform would be gemerated

N-1
2nk -y 2nkn
x, (of el 20 x(a+1) o oL OkaWL (4.9)

If these sampled values were then substituted into expression (4.5), we would
obtain sampled values of the periodogram at the more £finely spaced
frequencies wy = 2x/(N+L) for OSk{N+L. The effect of the L zero padding is
then seen to result in a reduction of the frequency sampling interval from
2n/N to 2n/(N+L). By selecting L suitably large, we can reduce this sampling
interval to any degree desirable.

One should not gain the mistaken impression that padding will emable us
to achieve any degree of frequency resolution desired. The fundamental
unsampled periodogram (4.5) has an inherent frequency resolution capability
of Aw = 2x/N (or equivalently Af = 1/N). When using a N point FFT
implementation of the periodogram, however, it is entirely possible that

- - =

——— s ——

; spectral peaks may lie between the sampled frequencies wy = 2xk/N. In such
‘ cases, the peaks effect on the sampled periodogram may be seriously diluted
even though it would be clearly evident in the unsampled periodogram. Upon
padding with L zeroes, we can remove the ambiguity caused by this sampling
process and still <retain the computational efficiency of an FFT
implementation.




V. AR Modeling — Time Series Observations

The task of genmerating AR spectral models from a set of time series
observations has been of primary concerm to many investigators over the last
few yoars. Undoubtably, the most widely used AR modeling procedure is the
Burg algorithm as first proposed im 1967 [13]), This algorithm not only
provided a spectral estimation capability that was theretofore lacking, it
also inspired an intense search for improved rational spectral estimationm
procedures, Much of contemporary spectral estimation theory has been
directly influenced by the philosophy contained within the Burg approach. As
a matter of faot, many of the more receant rational estimation procedures were
developed so as to overcome some of the deficiencies observed in the Burg
algorithm as typified by line splitting and biased frequency estimates,
Nonetheless, the Burg algorithm still occupies the pre—eminent position among
contemporary AR modeling methods. Since its operational behavior is so well
documented, we refer the interested reader to the relevant literature for its
detailed development (e.g., see refs. [23]1,[31]).

In this section and section IX, we will demonstrate that mamy of the
popularly used AR meothods (which includes the Burg =slgorithm) may be
interpreted as providing statistical estimates of the fundamental Yule—Walker
equations (2.11) that govera AR processes, These estimates are to be
obtained from the set of contiguous time series observatioas

x(1), 2(2), ..., x(N) (5.1)
which are made available through some measurement mechanisa, Moxe
specifically, it is well known that various contemporary methods either
oxplicitly or implicitly use these observations to generate estimates of the
(p*1)x(p+1) autocorrelation matrix R which appears in the fundamental
relationship (2.11)., Cloarly, the elements of the matrix estimate R must be
such that

R(i,j) is an estimate of r (i-j) for 1  i,j £ p+l (5.2)
Once thess eostimates have been computed from the given time series

observations, the resultant autoregressive parameter vector estimate is, in
acocordance with expression (2.11), obtained by solving the linear system of

equations.
42
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in which the normalizing parameter b, is selected so that the first componment
of a is one., The steps of this general AR modeling approach are summarized

in T‘bl [ ] 5’01'0

Step 1: Compute Estimates of R(i,j) = rg(i~j) for 1 (i,j,{p+l to form
the (p+l)x(p+l) autocorrelation matrix estimate R.

Step 2: Solve the linsar system of equations Ra = |b°|2 81 in which the
normalizing coefficient b, is selected so that the first

component of a is one.
Step 3: The required AR(p) spectral estimate is then specified by
Sp(ei®) = bo

1148y ei0 s .+, emiD0

Table 5.1 Basic steps in obtaining an AR(p) spectral estimate,

The quality of the AR modeling approach as embodied in expression (5.3)
is oritiocally dependent on the choice of the autocorrelation lag estimation
procedure used. For many applications, the standard unbiased aumtocorrelation
estimates as given by

N
B(LD) = —2 Y xaei-pE(o) 141 (5.4)
Ll EE ) I 1£j<lp¥l

typically provides the best selection in terms of spectral estimation
pecformance, It is seen that the autocorrelation matrix formed from this set
of estimates will be Toeplitz and symmetric; properties shared by the actual
astocorrelation matrix being approximated. Moreover, this estimate is
sonsistent in the sense that as N approaches infinity, we have i =) R under
the second order ergodic assumption on the time series, In view of all of
those favorable qualities, it is not surprising that the standard unbiased
estimator (5.4) generally provides excellent AR modeling performance., In
Section IX, some of the more popularly used adaptive methods of AR speoctral
estimation will also be studied.

e e kA e




VI. ARMA Modeling: Time Series Observations

The methods for generating ARMA models based upon times series
observations fall into basically two categories: the ay and by parameters
are either evaluated (i) simultaneously or (ii) separately. In the first
category, maximum likelihood based techniques form one of the most widely
used of such methods. These include oxact maximum likelihood approsches i
(e.g., refs [6] and [48]), and, least square methods which approximate the
; exact likelihood funotion (e.g., refs [3]1, [9], [29]). Although offering the
F yromise of optimum modeling, these maximum likolihqod mothods entail the
application of nonlinear programming solution procedures. As such, these
solution procedures are computationally inefficient, and, they suffer the
obvious drawbacks characteristic of noplinear programming methods. Other
nonmaximum likelibood methods which fall into category (i) have been proposed
(e.g., see refs, [30]1,[40],(60]). These methods also entail the utilization
of nonlinear programming solution procedures.

In recognition of the obvious shortcomings of noanlinsar programming
based techniques, a number of methods have been proposed which employ a
separate evaluation of the AR and MA parameters. By using this approach, it

is generally possible to obtain satisfactory modeling while not imcurring the
drawbacks of s nonlinear programming solution procedurs. These techmigues
typically entailed using the first p extended Yule—Walker equations to obtaia
estiamtes, in a 1linear fashion, for the AR paramoters (e.g., see refs
[26],028),[351,[38]), Unfortunately, the utilization of the minimal aumber
of extonded Yule~Walker equations (i.e., p) gave rise to an undesirable

parsmeter hypersenmsitivity. In recognition of this fact, a procedure for
using a overdetermined set of Yule~Walker equation evaluations to decrease
this hypersensitivity was proposed [15]. This approsch has since been
adopted by other researchers in spectral estimation applications with success
(e.g., see refs. [71,{12]1,(361,(51]1). With this in mind, we shall now give a
detailed development of the overdetermined approach to eostimating the AR
parsmeters of an ARMA model.

AR Pazameter Estimation
Although the procedure presented inm Section II for genmerating ARMA |

models is attracotive, ome is rarely provided with exact autocorrelation
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information. The more common situation is one in which the omly available
information takes the form of a finite set of time series observations
x(1), x(2), . . . , x(N) (6.1)

The task at hand is to then use these time series observations to estimate
the parameters of a postulated ARNA model. In this parameter estimation, we
shall seek to incorporate the philosophy as embodied in the extended
Yule-Walker ARMA model equations (2.23) for estimating the model’s ay
parsmeters,

This will effectively ontail using the given time series observations to
generate an eostimate of the tx(p+l) autocorrelation matrix Ry which appears
in expression (2.24).. Namely, using any of a number of available procedures,
we first compute the following autocorrelation lag estimates '

31(1.3) = an estimate of ryx(gtl+i-j) 1<igt (6.2)

1{jsp1l

Two parctiounlarly attr~ctive procedures for effecting these autocorrelation
estimtaes will be detailed at the end of this section amd in Section X,
Independent of what procedure is eventually used, the net result of this
first step will be the generation of a tx(p+l) autocorrelation matrix
estimate 31. Due to errors inherent in the autocorrelation estimation
process, however, this matrix estimate will generally have full rank (i.e.,
min (p+l,t)) instead of the theoretical rank p which is possessed hy the
matrix Ry being estimated. This being the ocase, it is therefore not
generally possible to find an autoregressive parameter vecotor with first
component equal to ome which will satisfy the theoretical relatioaship Rya =
© as given in equation (2.23). As such, the txl oxteamded Yule~Walker
equation error vector as specified by

P (6.3)
will be gemerated.

A little thought will comvince oneself that the elements of this error
veotor will be composed of s sum of many random variable products (i.e.,
x(k+m)X(m)) wused in formulating the autocorrelation 1lag estimates.

Consequently, an assumption that the error vector elements tend to be
Gaussianly distributed is « reasonable one. The joint density fumction of
the extended Yule—Walker equation error vector may be therefore approximated

by




Ivit/2
ple) = ____ ¢0.5(2*W9) (6.4)

(2m¥/2

in which W1 = E(g¢®] designstes the error oovariamce mstrix which is
gonerally unknown and where the expected valus of ¢ is takea to be zero,
With the availability of the error joiat demsity fumotioa (6.4), it is
now possible to apply the mexiwem—likelidhood ocomcept for estimatiag the
autoregressive parameters. Namely, making use of relatiomship (6.3) and the
joint density functiom (6.4), it is possible to gemerate a joiat density
function for the autorgressive parameter vector 3 vhich will be of form
r(s) = 7,—0.5(1&”&)
We now seek that vector & which maximizes this joiat deasity fumction subject
to the constraint that the first compoment of § be one, Ignoring the effect
of the multiplicative term y, the psuedo maximwm—likelihood selection for g

b then corresponds to solving the following comstrained minimizatioa problem
¥ o s
; min asR*WRa (6.5)
:, a(1)=1

Using standard Lagrange multiplier techmiques, the solution to this

: constrained minimization problem is obtained by solviang the following system
of (p+1)x(p+1l) linear equations

3‘1 v 31 a=ae] (6.6)
whexe @ is a normalizing constant selected so that the first compoment of
8° is ome.l Expression (6.6) constitutes the so—called high pexrformance
method of autoregressive parameter selection [15]1-[20].

It is to be noted that in minimizing functional (6.5) with respect to
the normalization constraint imposed on 3's first component, the error vector
: is being minimized in the least squares sense, In effect, we are then

seleoting § so as to best satisfy the theoretical relationship (2.23) given
by Ria = ¢. Using this interpretation, the positive definite matrix W can be

A_A
11n those rare cases where the (p+1)z(p+l) matrix R1°WR;y is singular, the
autoregressive parameter vector will correspond to a suitable nommalized
eigenvector associated with a zero eigenvalue of this matrix,
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alternatively thought of as providing a weighting (instead of being an
unknown ocovariance matrix inverse) im the error functiomal (6.5). It is
therefore logical to take W to be a diagonal matrix whose nonnegative
diagonal entries wy for k = 1,2, ..., t provide s mechanism for weighting in
any desirable fashion the various extended Yule-Walker equation
approximations appearing in (6.3). The uniform weighting selection

W=1 (6.7)
where I is the txt ideantity matrix has been found to provide excellent
modeling performance when the matrix estimate Ry is unbiased.

A few words arxe now appropriate comcernming the selection of the integer
t which specifies the number of extended Yule—Walker equations that are being
approximated. When t is set equal to its minimal value p, the approach here
taken bears a close resemblance to various other ARMA modeling schemes (e.g.,
see refs. [26],(28],[35],(38]). In this case, the minimal number of p error
contaminated extended Yule-Walker oquation evaluations are being used ia
fizxing the model's p autoregressive coefficients., A little thought should
convince omeself of the potential parameter hypersensitivity which can arise
in this sitvation. To illustrate this point, let us briefly consider the
task of finding & 1line which ‘'best’ fits a set of error contaminsted
two—tuples (xy,yy). Although only two two—tuples are needed to fix the
line’s two pasrsmeters (i.e., its slope and y intercept), it will be generally
more desirable to fix these parameters by using more than this minimsl number
of two—tuples thersby obtaining a more ’representative linear fit’. This
will entail finding the ‘best least squares linear fit’, The benefits
generally accrued in using this overdetermined approach are demonstrated ia
Figure 6.1.

With the above in mind, the real advantage of this paper’s approach is
achieved when the integer t is selected to be larger than p. In this case,
more than the minimal aumber of extended Yule—Walker equation evaluations
il.e., t instead of p) are being used in fixing the model’s p sutoregressive
coefficients, It is then not surprising that a desirable decrease in
parameter hypersensitivity is generally realized upon selecting t > p. Am
indication of the benefit acorued by selecting t > p was illustrated ia
Section III for the case of AR modeling with perfect autocorrelation lag
values. A similar advantage will bde demonstrated in Section VIII when ARMA
models are generated from raw time series observations, In the situation




being considered here, the integer parsmeter t is typically selected to lie
within the range

pLt {Ng1l (6.8)
with gonerally Jlarger values than the minimum p being preferred for modeling
fidelity.

From an overall modeling viewpoint, the standard unbiased estimator has
been found to generally provide the best choice for the lag estimates
required in oxpression (6.2).. Specifically, the required autocorrelation lag 1

ostimate entries are gemerated according to

N-n
AV

:_x (a) = _1_ ) x(k+n)x(k) 0{nlg+t (6.9)
N-n k=1

where q+t corresponds to the largest autocorrelation lag argument appearing
A

in matrix Ry, We would of course use the property that

fy(-n) = Tx(n) to obtain any negative lag autocorrelation entries which may

A
be needed in formulating Ry, In using this unbiased estimate approach, the
resul tant autocorrelation matrix estimate will have s desiradble Toeplitz

structure.
Ag A
The (p+l)x(p+l) matrix R;'l1, which completely characterizes the
autoregressive parameter vector solution through expression (6.6), will have

components which are readily computable from the estimates (6.9). Using
simple matrix manipulations, it is readily shown that the gemeral (i,j)th
element of this matrix is specified by
t
Ay A x o
RiWRy(i,j) = } wim)z(gtmtl) r(gtm+i~j) for 1 { i,j £ p*l (6.10)
=1

where the w(m) correspond to the diagonal elements of the diagonal weighting

matrix W. Upon gemeration of the matrix 3;131 according to this expression,
the required autocorrelation parmmeter veotor is straightforwardly obtaized
by solving the system of linear equations (6.6). A Fortran program listing
of an implementation of this procedure is given in the appendix where the
flexibility of using the standard unbiased or the standard biassed (i.s.,
divisor N-n in equation (6.9) is replaced by N) autoocorrelation estimate is

available,
48
- - e s e e "‘“‘w"‘-‘ﬂ"'wﬂﬂ"r“"- ety gy O ~ - -
A i it it St i it iitbaiiatethnaiteti o ettt




MA Parsmeter Estimation
To complete the ARMA modeling, it is necessary to compute an estimate

for the moving average component IBq(eJO)lz. It has been the author’s
experience that independent of which procedure is used, this MA component
3 estimate is almost always of significantly lower qulity'thu the asssociated
AR component

i
}
¢
{

P
Rptednyi2 = | 3 up otekf’ (6.11)
k=0

[P

in which ay denote the autoregressive parameter estimates as gemerated from
expression (6.6). A high quality low order MA spectral estimator bas yet to
be developed. Despite this shortcoming, some reasomably well performing MA

estimators will now be briefly discussed.
Many contemporary MA component eostimators are based on utilizimg the
forward ~nd backward residual time series associated with an ARMA time

series, In particular, the forward residual time series elemeats are

computed from the givem observations (6.1) and the antoregressive pirameter
oestimates (6.6) according to

P
sg(n) = } sx x(n-k) ptl { a (N (6.12)
k=0

R T
P

Similarly, the backward residuals component are generated using

P .
sp(n) = } ax x(a+k) 1 {n {N-p (6.13) .
k=0

As indicated in Section II, each of these residual time series will be
governed by the same MA(q) process if the time series (x(n)} is an ARMA(p,q)
process with autoregressive parameters ay, With this ia mind, a procedure
for eoxtracting this MA ocharacterization from the oomputed forward and
backward residuals will now bde given,

i e e i

The most direct procedure for achieving the required MA(q) estimate is
to first gemerste the following estimates of the residual time series’ first

‘
|
i
|
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- It is also possible to employ the smoothed periodogram to obtain smother
form of MA(q) estimate, This entails segmenting the computed residuvals in
blocks of lemgth q+1 (overlapping or not overlapping) and then sversging the
resul tant q+1 length periodograms for each of these blooks, This procedure
has been employed with & moderate degree of success [17]:. Similarly, we
could make obvious adaptions of the procedures treated in Section II under
the ARMA modeling subsection to achieve alternate MA estimates. For example,
if we were to use the procedure as charscterized by expression (2.38),

estimates for the o parameters would be computed from

b §

Cp = } sk ?x(n-k) 1{np (6.18)
k=0

The required ARMA spectral estimates would theam be given by incorporating
these ostimates into expression (2.33) to result in

Sz(ed®) = £,(0) + 2Re [D(eJ®)] (6.19)
vhere D(el®) is obtained by substituting the 8y sad ox estimates iato form
(2.34).




————

pare
- 5

q+1 autocorrelation lags

N-p~a
Tam) = 1 ) [selatprmTe(erE) + spaen) ()] . Ogage
¥re ba (6.14)

If the residual time series do in fact correspond to a MA(q) process, it will
be found that the rg (n) will be approximately zero for n)q+l. This can be
used as a oconvenient test for the appropriateness of the ARMA model, the
order selection, snd, the estimates ay. In any oase, upon taking the Fourier
transform of these autocorrelation lags, we obtain the MA(q) speoctrsl
ostimate component

q
Byteim12 = ) wln) Fy(n)e=jun (6.15)
a=—q

in whioh w(n) is a window sequence and use of the fact that r (-n) = Tg(a)
will be made whea evaluating (6.14). The overall ARMA(p,q) spectral, estimate
is thea given by

a 2
S(eju) = |Ba(ed®) (6.16)
(ejw) |2

A
where Ay(eJ®) is specified by expression (6.11).
A few words are now appropriate conceraning the selection of the window

to be used ia estimate (6.14). If the rectangular wiandow choice w(n) = 1 is
made, this estimate will not have the desired property of being guaranteed
positive—semidefinite. To achieve this positive—semidefiniteness, we could
iastead choose the wiandow to be

w(a) = (""") (“""’"‘) (6.17)
N-p q+l

Unfortunstely, this selection ocan give rise to a scriously distorted MA
estimate ia view of the triamgular like weighting thereby employed. The
selootion of w(n) is quite importaast and this choice should be based om the
partiocular application at hand and user experience.

mdsiiudlocici




VII. ARMA Modeling: A Singular Value Decomposition Approach
We have yet to address the important issue of ARMA model order

determination, In particular, vwhether ome is provided with exact
autocorrelation lags or time series observations for effecting the modeling,
how ome chooses appropriate values for the order psrameters p and q remains
an open question., It is recognized that this model order information is
! implicitly ocontained in the autocorrelation matrices which characterize ARMA
i models, In this section, we shall present a procedure for extracting the
prerequisite model order values which will make use of s singular value
decomposition of an extemded autocorrelation matrix. Am important byproduct
of this procedure will be an adaption of the ARMNA modeling procedure of the
previous section which provides for a signjficant improvement in spectrsl
estimation performance.,

When the ARMA model order parameters are not known apriori, it will be
judicious to select the initial model order to be much larger than the
tanticipated’ order. In particular, let us consider the extended order ARMNA

(Pe,qe) model for which pe is selected to be larger (usually much larger)
than the eventual model order parameter p to be used. Although we typically

do not know p apriori, it is generally possible to make an educated guess of
p so as to emsure that

In accordance with expression (2.23), it them follows that the tx(py+1)

———— -

extended order autocorrelation matrix associated with this ARMA(p,,qe) model
may be expressed as

[ Tx(getl) rx(qe) o« o rx( %‘Po"’lT
ry(get2) rz{getl) « e rz(qe=Det+2)
R. = . ‘. ‘. ( 7 .2)
| Tx(qett) rx(qott-1) « .. rz(qe—pe+t) !

If the auntocorrelation lag entries used in this matrixz correspond to an
ARMA (p,q) process for which qg-pe 2 q¢—p, it them follows from the results of
section II that the rank of the tx(p,+l) matrix R, will be p. In arriving at
this result, we of course assume that t is selected to at least equal p. To
determine the required order parameter p, we then simply set p equal to the

.
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rank of Ry for the idealistic case in which exact autocorrelation lag
information is available.

To obtain the ARMA model’s (p+1)xl autoregressive parameter veotor g
from this extended order amtocorrelation matrix, it is possible to appeal to
the theoretical developmeats of Sectioa II. In particular, let us consider
the set of submatrices of Ry, formed from amy p+l contiguous columns. This
set of tx(p+l) matrices is specified by

Ry = [submatrixz of Ry composed of its ktB through
p+ktR column vectors inclusivelyl for 1{k<p,-p+l (1.3)

In accordance witk the ARNA model eoxtended Yule—Walker equation
relationships, it is <readily established that the required unique
autoregressive parameter veoctor & will satisfy the set of homogeneous
relationships

Byg = o for  1(k<pe~p+l (7.4)
where the first compoment of g is constrained to be one. In point of fact,
expression (7.4) provides a matrix representation for the t extended
Yule~Walker eoquations (2.22) defined on the specific indices qg+¥2-k { n ¢
gett+l-k, It is important to mote that this conclusion will be valid only if
the auntocorrelation lag entries used in forming Ry correspond to sm ARNA
(p,q) process, and, the order parameters are such that Po 2 P and qg¢—Pe >
TPp.

We shall now apply this rank characterization of R, to the practical
problem in which the ARMA modeling is to be based only on the time series
observations

x(1), x(2), +eos x(N) (1.5)
and not om actual autocorrelation lag information., In this case, it will be
necessary to first compute autocorrelation lag estimates from these
observations., These ostimates are next substituted into the matrix format

(7.2) to in tura generate the extended order autocorrelation matrix estimate

Rys Since the autocorrelation lag estimate entries will de invariably ia
error, it follows that the matrix R, will normally have full rank (i.e., min
(Pe+1,t)) even when the time series under study corresponds to an ARMA (p,q)
process. Nonmetheless, even though R, will have full rank, its ‘effective’
rank will still teand to be p. To better quantify the vague term ’effective’




rank, it will be bemeficial to introduce the principle of siagular value
decomposition.
Sipgular Value Decomposition
In & varioty of applications, the ultimate objective will be that of
solving a linear system of equations. The matrix associated with this system
of equations not omly characterizes the desired solutiom, but, it will also
very often convey dynamical property information. With this im mind, it
often behooves us to examine the salient properties of this characterizing
matrix, The singular value decomposition of a matrix as outlimed in the
following theorem serves this role particularly well (e.g., see ref. [27] and
[(3e).
Theorem 7.1: Let A be a mxn matrix of goemerally
complex valued elewents, Then there exists mxm
and axn unitary matrices U and V, respectively,
such thatl
A=UZ=V* (7.6)
where = is a mxn matrix whose e¢lements are zero
except possibly along its main diagonal. These
nonnegative diagonal eolements are ordered such
that
011 2093 2« « 26, 20
where
h = min (m,n)-.

The diagonal elements Oy 8T commonly referred to as the simgular values of
matrix A, It is well known that the nonzero singular values will correspond
to the positive square roots of the eigenvslues of the noannegative Hermitian
matrices AA® and A®A, DMoreover, the columns of U (or V) will correspond to
the appropriately ordered orthonmormal eigenvectors of the mnonnegative
Hermitian matrices
AA® (or A"A).

The singular valuss Oy 90nvey valuable iaformation comceraing the rank
characterization of matrix A, This is readily demonstrated mpon considering

1‘&; u;:.i.cu U and V are said to be unitary if U1l = g* and
Visv,
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the problem of finding that mxn matrix of rank k which will best approximate
A in the Frobenious norm sense (this sssumes that opy > O with k { h). Tae
Frobenious norm of the mxn matrix difference A-B is defined to be

1/2

I1a - Bl -L§ 3 |.1,-s“|3] (1.7

=1 j=1

We now seek to find that mxn rank k matrix B wvhich will render this criterion
a minimum. The solution to this spproximation problem is contained in the
following theorem [27]

Theorem 7.2: The unique mxa matrix of rank k (

Rank [A] which best approximates the mxn matrix A

in the Frobenious norm sense is given by

AR g s, Ve (1.8)

vhere U and V are as in expression (7.6) while Xy

is obtained from = by setting to zero all but

its k largest singular valuwes, The quality of

B N ST e

this optimum approximation is given by i
h 1/2

HA =A@ =] ) o552  ogx¢h (1.9)
j=k+1

The degree to which A(k) spproximates A is seen to be dependent om the
sum of the (h-k) smallest singulsr values squared. As k approaches h, this
sum will become progressively smaller and will eventuslly go to zero at k =
R, In order to provide a comvenient measure for this behavior which does not
depend on the size of matrix A, let us consider the normalized ratio

(x)]] ‘
1(k) = llA '
AT
. [0112 + 022 + . ..+ oyl 1/2 1{k(h (7.10)
’u"*azzjr*-'- -*m’

Clearly, this normalized ratio approaches its mazximum value of ome as k
approsches h. For matrices of low effective rank, the quantity (k) is close
to one for values of k significantly smaller than h, On the other hand,




matrices for which k must take om high values (i.e., ¥ h) to achieve a (k)
near one are said to be of high effective ramk,
Avplication of SVD to ARMA Modelimx

To determine the required order for an ARMA model, we shall now make a
SVD of the tx(py+l) extended order autocorrelation matrix estimate Ry, that
is

R = USV* (7.11)
where U and V are txt and (pe+1)x(pe+l) unitary matrices, respectively and
Z is s tx(pg+l) matriz of the form called out in Theorem 7.1. The required
sutoregressive order p is obtained by exsmining the normalized ratio ¥ (k).
Namely, p is set equal to the smallest value of k for which V(k) is deomed
'adequately’ olose to one., The terminology ‘adequately oclose to ome’ is
subjective and will depend on the particular application under comsiderationm
as well as user experience gained through empirical experimentation. In any
case, the net result of this step ~ill be a rank p optimum approximation of
the tx(pg+l) extended order autocorrelation matrix, that is

g, -vx,v (1.12)
A simple matrix manipulation reveals that this rank p approximation may be
equivalently represented as

P

no(l’) = } Spn Bp Yo' (7.13)
=]

where uy and yx are the ktB column vectors of the txt and (pg+1)x(pe+l)
unitary matrices U and V, respectively. We shall now provide two separste
procedures for using this rank p approxzimation for effecting autoregressive
parameter estimates,

Mothod I: ARMA (py,qe) model

In this spproach, the rank p approximation (7.12) is iaterpreted as
providing an improved estimate of the underlying extended autocorrelatioa
sateix, It will be convenjent to decomposs this rank p approximation as
follows

R(P) = (24(P) R, (P)] (7.14)




where r1{P) is the left most txl column vector of Ro(P) and R,(P) is txp,
matrix composed of the p, right most txl columm vectors of R,(P). We now
sook a (pg+1)x1 autoregressive parameter vector s with first compoment equal

to one that will satisfy the theoretical relationship

: n.(p) 2=0

F Since the rank of l,(l” is less than full, there will exist an infinity of
solutions to this problem. VWe shall select the minimum norm solution as

specified by

110
age

. - - [Ry(P)}¥ g4 (p)

in which the supersoript notation # demotes the operation of gemeralized

(psuedo) matrix inversion, This autoregressive parameter selection procedure

has proved to be partiocularly effective in low SNR enviromments, It is

readily shown that this minimum norm solution can be simplified to

- e - - e . I



k=1
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(7.15)
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where the Yy correspond to the column vectors of the unitary matrix V

appearing in the SVD representation (7.12).

Method IXI: ARMA (p,q) Model

The best rank p approximation matrix (7.12) coatsins within its column

structure the characteristics required to estimate autoregressive parameters

of a lower order ARMA(p,q) model. In particular, the submatrices of R,(P)

composed of its columns k through p+k inclusively yield rank p approximations

of the tx(p+l) autocorrelation matrices Ry for 1 ¢ k ¢

Pe - p+tl as specified by expression (7.3). VWe shall denote these rank p
(p)

approximations by Ry Due to the SVD operstion and errors inherent in
generating R,, there will generally not exist a unique autoregressive
parametexr vector with first compoment equal to ome which will satisfy all of 1

] the py,~p+l estimates of relatiomships (7.4). Nonetheless, it is still
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desirable to find an autoregressive parameter vector for which each of these

relationships are almost satisfied. A functional that measures the degree to

which this is accomplished is given by

E £(g) = g s(P)y (7.16a)
E where
Pe—p+l
s(p) = 2 nk(p).kk(l') (7.16b)
k=1

The (p+1)x(p+l) matrix S(P) is nonnegative Hermitian and may be conveniently
computed using the relationship

P DPe-ptl
s = ) ) ykyke (1.17)
n=1 k=1

in which !nk denotes the (p+1)x1 vector as specified by

Yok = [vy(k),vg(k+1), ..., vg(k+p)]’ (7.18)
; ' 1 {k < pg-ptl

] 1¢ngp

; This vector is seenm to be a windowed segment of the ntR column vector (i.e.,

¥5) of the unitary matrix V that in part identifies the SVD represeantation

(7.11).. Moreover, due to the simple shift relationship between the vectors

1: and 1:+1. it is possible to devise an iterative procedure for updating the

(p+1)x(p+1) matrices 1:1:' as k evolves, This will eatail (p+l) computations
for each value of k.

Upon generating the (p+1)x(p+l) matrix S(P), we next wish to select that
autoregressive parsmeter vecotor a with first component of one so as to
minimize quadratic functionmal (7.16). This constrained minimization will
result in the best 1least square approximation of the theoretical
relationships (7.4)- Using standard procedures, the required optimum

i e -




autoregressive parameter vector is found by solving the following linear
system of equationsl

$(P)y =a gy (7.19)
in which the normlizing constant a is selected so that the first compoment of
a2 is ome., It will be shown in the next section that this SVD version of the
ARMA modeling procedure can lead to a significant improvement in modeling
performance.

The comcept of a SVD representation has been previously incorporated
with success in effecting AR models [42] and [61]. Incorporation of an SVD
AR model was there shown to produce an increase in spectral resolution
capabilities. More recently, the SVD representation was used in ARMA
modeling where impressive results were reported [22]. Undoubtably, the impact
which SVD will nultimately have on spectral estimation (and in other
applications) is omly beginming to be appreciated.

11a those rare cases where s"’ is singular, the required auntoregressive
parsmeter vector is set equal to an ;yproprhtoly normalized eigemvector
associated with s zero eigenvalue of 8 .
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VIII. Numerical Examples

In this section, we shall investigate the comparative spectral
estimation performance of the rational modeling prooedures as developed inm
Sections VI and VII with those of popunlarly used altermatives. The first
example will treat the problem of effecting a ratiomal spectral estimate from
a set of observations of an ARMA(4,4) process. In the second example, we
shall examine the modeling performance for the special case of sinusoids in
white noise.

Example 1: In this example, we shall examine the time series as
characterized by (see ref, [11])

x(n) = x3(n) + x2(a) + 0.5 &(a) (8.1a)
which is composed of the two AR(2) time series gemerated according to

x1(n) = 0.4 x1(n-1) - 0.93 x3(n-2) + e3(n) (8.1b)

x3(n) = -0.5 x3(n-1) - 0.93 x3(n=2) + e3(mn) (8.1¢)

where e(n), ¢1(n) and e3(n) are mutually uncorrelated Gaussian zero mean
white noise processes with variance ome. A simply analysis indicates that
the power spectral density function associated with time sories (8.1) is
given by

Sy(w) = |1 - 0.4e7d0 + 0.930‘12“|_2 +

I1 + 0.507J® + 0.930-326|72 + 0.25 (8.2)
and is plotted in Figure T7.la.

Using the time series description (8.1), twenty statistically
independent realizations each of length 125 were next gemerated. These 20
reslizations were then used to compare the modeling effectiveness of this
paper’s method with the Box—~Jenkin’s maximum—likelihood method. The tweaty
(one for each realization) superimposed ARMA (4,4) spoctrsl estimates
obtained using the Box-Jenking iterative method are shown ia Figure 8.1b,
The =umber of iterations required to achieve these estimates ranged from 10
to 700 with 50 being a typical requirement. Next, this paper’s method as
represented by expression (6.6) with unbiased autocorrelation lag estimates
and W = I was used to obtain the ARMA (4,4) wmodel’s autoregressive
coefficients, Relationship (6.15) with the window selection (6.17) was used
in forming the MA component of the spectral estimates, The twenty
superimposed ARMA (4,4) spectral estimates thereby obtained are showa in
Figures 8.1c, 8.14, snd 8.1¢ for various choices of t. From these plots, it
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is apparent that progressively improved estimates are achieved upon
increasing t from its minimal value of 4, to 8, and them to 20. JMoreover,
these spectral estimates were of higher quality than those obtained with the
maximum—likelihood method which exhibited a larger variance in estimate,

Example 2: In this example, we shall investigate the ocomparative
spectral estimation performances of various widely used methods on the
classical sinusoids in additive white noise problem. The particular time
series to be considered is given by

x(n) = sin(2nfin) + sin(2nfan) + w(n), 1{n¢N (8.3)

f1 = 0.2, fa = 0.215, o¢ = 0.5

This time series was previously examined in Section III where differeat
rational models were gonerated from the ‘exact’ auntocorrelation lags
associated with it. This is a particularly appropriate time series for
testing the resolution capabilities of spectral estimators because of the
closeness of the sinusoidal frequencies (i.e., f2-f3y = 0.015) and the
prevailing low signal—~to—noise ratio of zero dB (individual sinusoid power to
total noise power).

In order to gain a reasonmable good statistical basis for comparisom, tenm
statistically independent realizations of the time series (8.3) were
generated with esch realization being of length 128 (i.e., N = 128). Using
these ten different sets of time series observations, ten spectral estimates
woere made for various widely used rational spectral estimators. The
resul tant ten spectral estimates for each estimator were then plotted in
Figures 8.2 to 8.7 in a superimposed fashion (except for the periodogram) so
as to depict consistency of estimate. The ideal estimate would of course be
two sharply defined peaks at frequencies 0.2 and 0.215., A drief descriptionm
of the different estimators and their performance on these test samples is
now given.

MA Estimates: The periodogram as implemented by the fast Fourier
transfora was first used in genmerating speotral estimates for each of the tem
different 128 data length realizations. Specifically, expression (4.7) with
N = 128 was incorporated into the MA speotral estimator (4.5) to generate the
sampled periodogram estimate




N-1 2
s (.33"“) 112 sasn) o-i2EE 0 (KN (8.4)
£\ N /5 N la=0 N

It was found that each of the tea periodograms produced remarkably similar
results., A typical 128 point FFT periodogram for ome of these trials is
shown in Figure 8.2a. From this plot (and the nine others not shown), it was
not possible to unambiguously detect the presemce of two spectral ﬁeaks at
frequencies 0.2 and 0.215.

In order to ease the potential ambiguity created by the finite frequency
sampling of the periodogram (i.e., Aw = 2n/N), the concept of paddipg as
described in Section IV was next :I.ncotporui:ed-. Using this approach, the
original time series observation of length 128 was next appended with 128
zeroes. The resultant 256 point padded FFT periodogram is shown in Figure
8.2b., In this padded case, we are able to unambiguously detect the presence
of the two spectral peaks at 0.2 and 0.215. A further padding of 256 zeroes
is found to result in the 512 point padded FFT periodogram shown in Figure
8.2c. The prerequisite spectral resolution is again achieved.

AR Bstimates: In AR modeling, the most widely used procedure is the
Burg salgorithm., VWith this in mind, the Burg algorithm was next used to
gonerate spectral ostimates for each of the aforementioned ten observation
sets of length 128. The ten superimposed Burg AR(20) estimates which
resulted are depicted in Figure 8.3a. Although a detection of spectral
energy in the region sbout £ = 0.2 is evident, the appearance of two spectral
peaks is not., The ordering selection p=20 was evidently not sufficieat for
the required resolution, Upon increasing the AR order to p = 24, however,
the Burg AR(24) estimates produced two ressomably well defined peaks about f
= 0,2 and £ = 0.215 in nine out of the ten estimates. These estimates are
plotted in superimposed fashion in Figure 8.3b., It was further determined
that more sharply defined peaks are achieved in all ten estimates when the
order was increased to forty. The Burg algorithm is thean seen to provide a
satisfactory resolution performance for the time series under study provided

that the AR order is selected to be on the order of 24 or more,

In order to demonstrate the effeot of using more than the minimal number
of extended Yule—Walker equations in arriving at an AR model (the Burg
slgorithm uses the minimal number), the ARMA modeling techanique as embodied




in expression (6.6) with W = I and unbiased autocorrelation lag estimates was
next used with p = 20, q = 0, and, t = 50. The resultant tem AR(20) spectral
ostimates which arose when using this approach are shown in Figure 8.3c. A
resolution of the two sinusoids was achieved in all ten estimates., It is
significant that the lower order AR(20) spectral estimates as genmerated using
this paper’s method provided more sharply defined peaks than the higher order
Burg AR(24) spectral estimates, This is primarily due to the fact that fifty
oxtended Yule-Walker equations were used in specifying the 20 autoregressive
parsmeters. The degree of smoothing achieved in applying this approach is
evident from this numerical example,

ARNA Estimates: The ARMA modeling procedure as represented by
oexpression (6.6) with W = I and unbiased autocorrelation lag estimate ontries
was next used to gemerate estimates of the autoregressive coefficients of an
ARMA(p,p) model for p = 8 and 12, In accordance with the results of Sectiom
III, plots of |A’(ej")|"2 were then made so as to reveal the required
spectral information for the sinusoids in white noise case (i.e.,, the zeroes
are not used). In Figure 8.4a, the ten AR(8,8) spectral estimates which
arose for a choice of t = 70 are shown superimposed. Although spectral
energy in the mneighborhood of £ = 0.2 is detected, the presence of the
required two spectral peaks is not., Clearly, the order selection p=8 was not
sufficient to achieve the desired resolution. Upon increasing the order to
ARMA (12,12) and retaining t = 70, however, the resultant tem spectral
estimates shown in Figure 8.4b each achieved the desired spectral resolution
with two sharply defined peaks about f = 0.2 and f = 0,215, These spectral
estimates have been obtained with but twelve autoregressive parameters, and,
sre seen to be significantly superior to the Burg AR(24) estimates which
required twenty-four autoregressive parameters. In terms of spectral
estimation fidelity snd parmmeter parsimony (i.e., offective use of
parameters), it is clear that the ARMA modeling method herein developed has
provided a superior performance for the problem at hand,

A truly significant increase in spectral estimation performance is
schieved upon adopting the SVD approaches to ARMA modeling as outlined in
Section VII., Namely, after setting py = g = 14 and t = 50, it was found
that the effective rank of the extended order autocorrelation matrix estimate
Re was four, Setting p=4 and using relationship (7.15), the ten ARMA(14,14)
spectral estimates which arose are shown ia Figure 8.4c., Next, letting p=4
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in eapression (7.17), the ten SVD derived ARMA(4,4) spectral estimates which
arose are shown superimposed in Figure 8.4c. These spectral estimates are
not omly of uniformly high quality, but, they represeat the Jlowest oxder
rational model which is compatsable with the two sinusoids im white noise
case. Meweover, the quality of the peak frequency estimates and associated
pole magad tude (theoretically equal to one) estimates is exceptional as shown
in Table 8.1. The quantities ?k(ik) and cikz (o’ 2) for k = 1,2 represent
the sampled means and variances, respectively, of the peak frequencies (pole
magni tudes) as determined from the ten spectral estimates.

k £y 4y ofy Ipx! olpxl
1 0.20 0.,1998 0,0012 0.9944 0.0062
2 0,215 0.2159 0.0011 0.9974 0.0080

Table 8.1: Statistios of SVD ARMA (4,4) estimates.

To demonstrate the worth of singular values in model order determimation
when using the SVD approach, the fifteen singular values which characterized
the extended order autocorrelation matrix estimate R, for ome of the tenm
observation sets are now given

011 =183, 03 =182 , 055 = 5.30 , gy = 4.69

c’s = 0.85 » c“ - 0078 » * o o » 615.15 = 0021

It is apparent that the first four singular values are dominant (i,e., (4) =
0.995) thereby indicating that the effective rank of Ry is four, Thus, the
corzect selection of ARMNA order p = q = 4 is made upon examimatioa of the
singular values behavior.

Alternative Method: In Section III, an alternate method for detecting and
estimating the frequencies of sinusoids in white noise was proposed. This
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mothod is represented by the least squares solution (3.9) to an overdetermined
systom of linear equations, Using this expression with s selection of p = 14,
t = 50, W= I, and, unbiased autocorrelation lag estimate emtries for R,
spectral estimates for each of the ten time series of length 128 were
gonerated. The results of these estimates are depicted in superimposed style
in Figure 8.5 in plots of 1/|A14(o.10)|2. Two sharply resolved pesks are
achieved in each of the ten estimates. It is noteworthy that this procedure
provided good estimates for a low order choice. A paper now ia preparation
will demonstrate the oxceptions]l performamce of this new procedure for a more
goneral class of deterministic signals in white noise, Improvement is there
achioved by making an estimate of the white noise variance o2 using expression
(3.2) at o=0, then subtracting this estimate from the r;(0) term and thenm using
an SVD. Initial empirical evidence suggests that this new approach provides
significantly better performance than the Pisarenko method [55] amd it
varients, and, the Kumaresan-Tufts approach [42],[61].

We shall now consider a time series of form (8.3) in which the relevant

parsmeters are given by
f3 = 0.2, f3 =0.21, ow = 1.778

This particular parameter choice provides a more challenging test of resolution
capability ia that the frequency spacing f2-f; = 0,01 is smaller and the SNR of
-~5dB is lower than that of time series (8.3). Again tem statistically sample
runs each of length 128 were used for testing four AR type models. In the
first AR model, expression (7.2) with choices of q4 = -1, p, = 35, t = 90
(giving 90 YW equation approximations) were made,;, Unbiased sutocorrelatiom
estimates wore then used to form the 90 x 36 matrix estimate Ry, Fimally, the
optimum autoregressive parameter estimates were generated upon using expression
(7.15). The resultant tea AR(35) spectral estimates are shown in superimposed
plots in Fig. 8.6a where resolution was achieved in each of the tea rums,
Next, the extended sutocorrelation matrix model (7.2) with q4 = -1, pg = 96, t
= 96, and unbiased autocorrelation lags was tested., Expression (7.15) with p = '
4 was then used to generate the a; estimates of the AR(96) model. A plot of
the resultant spectra is shown ia Fig. 8.6b where resolution was achieved for
each of the ten runs,
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The Kumaresan-Tufts method, whioch provides a near maximum—1i-.:iihood
performance, was next tested on these same ten sample runs [61], The resultaat
AR type 35th gnd 96th (the optimum KT order choice) order spectra are showa
plotted in Figs, 8.6c and 8.6d, respectively. The 35th order model was unable
to resolve the simusoids in any of the ten runs while the 96th order model
achieved a resolutiom in each case, For this example, it is appareat that the
overextended modeling approach advocated in this paper has outperformed the
pseudo maximum—likelihood Kumsresan-Tufts method. Moreover, the computationmal
efficiency of this paper’s overextended modeling method (7.15) is far superior
as will be documented in a forthcoming paper.

Adaptive ARMA Modeling
As a final example, the adaptive ARNA modeling procedure to be developed

in Section X was applied to the time series (8.3) in which the covariance mode
(ky = 40, k2 = 1) was selocted with ARMA order p=12, The spectral estimates of
five independent runs at dats lengths N = 128, N = 256 and N = 1024 ~re showa
superimposed in Figure 8.7. From these plots, it is appareat that the twelfth
order ARMA model detects the presemce of spectral emergy in the meighborhood of
f = 0,2 at data length N = 128, but, the resolution of two spectral peaks is
somewhat unsatisfactory. As the ARMA model adapts to the data, however, two
well defined spectral pesks appear at N = 256, The model has therefore adapted
to the signsl using less than 256 time series observatioms.

To illustrate the performance of this adsptive ARNA approach relative to
popularly used methods, the classical adaptive AR ocovariance method to be
developed in section IX was mnext used on the same set of time series
observations, The five spectral plots which arose for an AR(22) model are
shown superimposed in Figure 8.8 at N = 128, N = 256, and, N = 1024, Clearly,
the higher order covariance AR model was unable to satisfactorily resolve the
two sinusoids even at data length N=1024. Thus, the lower order ARNA (12,12)
covariance adaptive model significantly outperformed the bhigher order AR(22)
covariance adaptive model. This is indeed noteworthy whem it is realised that
some of the more widely used adaptive filters utilize the AR covariance model.
This 4includes the fast LMS algorithm of MNorf [25],[46],[47] and the
approximating gradient approach of Widrow [65].
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Paper's Method
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t=4

Decibels (dB)

Exact Spectrum

~Y

'» . 0.20 0.40 0.60 0.80 1.00
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Fig. 8.1 ARMA spectral estimates of order (4,4). (a)Exact. (b) Box-
Jenkins maximum-1ikelihood method. (c) Paper's method for t=4,
(d) Paper's method for t=8. (e) Paper's Method for t=20.

67a

e ——— e . .
v 7 ™ T

i I T L R T IR A e g e WP T g W g,
. _ e o e ——_ 5




S e

g
. N =
s, (a) 128
g 3
- »
v
a
18]
& 51
: |
‘s.os M0 028 0.8 0.40  0.80 o
;
:
8
o (b) N = 256
8 8 128 zeroes appended :
w
@
: =
4 |5
'. &
}
]
|
T o
, g (c) N = 512 |
;i e ) 384 zeroes apoended : 4
X
O] g
; > %
! "
o ; ‘
2 : ]
o f
8

Fig. 8.2 Moving average (MA) spectral
estimates using the FFT
implementation of the periodogram
with 128 time series observations
(a) no zero padding, (b) 128 zero
padding, (c) 384 zero padding.
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Fig. 8.3 Autoregressive (AR) spectral estimates
from 128 time series observations
(a) p = 20 Burg estimate, (b) p = 24 -
Burg estimate ?c) This paper's method
(6.6) withq =0, p= 20, t = 56
estimate using expression (6.6).
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Fig. 8.4 Autoregressive-moving average (ARMA)
estimates from 128 time series observations
(a) p=q=8, t=70, (b) p=q=12, t=70,
(c) SVD method I with p_=q_=14, t=50
yielding p=4, (d) SVD mEth8d II with
pe=qe=14, t=50 yielding p=4.
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Fig. 8.5 Spectral estimates using
alternative method (3.9) with
p=14, t =50 and W = I.
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Fig. 8.7 Adaptive ARMA (12,12) spectral
estimates with k1=40, ko=1.
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IX. AR MNodeling: Adaptive Implemeoantation ‘
In section V, a general procedure for effecting an AR model which

represents a set of given time series observations

x(1), x(2), . « « » x(N) (9.1)
was presented. It was there shown that the required modeling entailed using
thoese time series observations to gemerate estimates for the entries of the
(p+1)x(p+1) AR autocorrelation matrix as specified by

R(i,§) = rg(i-j) 1£1,j pHl (9.2)
From a performance viewpoint, the unbiased auntocorrelation estimate (5.4) was
suggestod as a logical cholce for estimating these entries, In any case,
once estimates for the R(i,j) elements have been made, the required AR(p)
model parameters are obtained by solving the linear system of equations

Ra=Ivgl2 o (9.3)
where it will be recalled that the parameter b, is chosen so that the first
component of a is one.

In applications requiring a continuous updating of the AR model
parameters as new time series observations become available (i.e., x(N+1),
x(N+2), ...), however, the standard unbiased estimator approach poses a
serious computational burden. To overcome this difficulty, it behooves us to
seek altornate autocorrelation estimators which are more ameanable to an
adaptive solution. VWith this objective in mind, we shall now comsider the

adaptive class of sutocorrelation estimstors as defined by

R N+ko-1
R(i,j) = 1 } F(k+1-1) x (k+1-)) 144 (9.4)
N+k2-k1 k'kl 1{jsp+1

in which the conveation of setting to zero any summand terms x(n) whose
argument lies outside the observation set 1{n{N has again been adopted.
Although this expression might initially appear to be unduly contrived, it
does provide us with an autocorrelation estimate of r (i-j) as called out for
in expression (9.2). lMore importantly, however, this estimator will be
shortly shown to have a most comvenient matrix product representation,

The integer constants ki and k3 which characterize the autocorrelation
lag estimator rule (9.4) are to be selected so that the number of lag

products there used (i.e., N+ka-kj) at least equals ptl. This requirement




will generally ensure the invertibility of the asutocorrelation matrix
ostimate i associated with the estimates (9.4). In most cases of interest,
these constants are further confined to the ramge 1<k;,ko(p+1 although other
choices are permissable. It then follows that each member of the adaptive
sutocorrelation estimator class will be identified by a specific two—tuple
(k1.k2)1. Moreover, each such ostimator will provide a generally different
set of autocorrelation eostimates from the given set of time series
observations (9.1)-

Membexrs of the adaptive class of autocorrelation estimators have a
particul arly convenient algebraic representation which we shall employ when
effecting the promised adaptive implementation. Specifically, the
(p+1)x(p+1l) autocorrelation matrix estimate that arises upon using the
estimates (9.4) as entries can be always expressed in the following dats

matrix product format

; 1 .
= IN IN (9.5)
N+k2—k1

in which Xy is the (N+k2~k1)x(p+l) data matrix whose individual elements are
specified by

IN(i, j) = x(k1+i-j) 143 (N+k2-k3 (9.6)

1{3<p+1

We have here appended the subscript N to the dats matrix so as to explicitly
recognize its dependency on the data length, The incorporation of this
subscript will be also useful when obtaining the promised adaptive
implementation, A straightforward analysis will demonstrate the equivalency
of expr.ssions (9.4) and (9.5). The data matrix is seen to have elements
whose entries are the given time series observations (9.1) as well as zeroes
which appear whenever the time index argument (kj+i-j) falls outside the
observation set 1{aN.

It is possidble to provide s revealing visual interpretation to the
concept of dats windowing for this class of estimators. In particular, let
us consider the following (N+p)x(p+1l) kerpel Toeplitz type matrix which

1As we will shortly see, the four most widely used members of this class are
the ocovariance method (kj=p+l, ky=1), the autocorrelation method (ki=1,
ka=p+1), the prewindow method (ky=1, ky=1), and, the postwindow method
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contains, as submatrices, all of the data matrices associated with the
adaptive class of autocorrelation estimators.

2(1) O —_ k=1

. - Prewindowing
N SO re S R

ZN - | . . (9.1
M .. ... x(Np K =1

Q ) . ‘. Postwindowing
. x(N) ] ky = ptl

Upon examination of the data matrix definition (9.6), it is apparent that IN
may be identified with that submatrix of N composed of its kg3t through
(N+k2-1)'t rows, inclusively. Thus, ocorresponding to each adaptive

autocorrelation estimator (i.e., pair (kj,kj)), we may obtain the associated
data matrix using this row identification scheme.
The zeroes which appear in the upper right cormer of the kernel matrix
ZN are there due to the implicit assumption that x(n) = 0 for -p+1{n¢0. This
rather unreslistic assumption concerning an umobserved segment of the time
sories is commonly referred to as a prewindowing of the data. It is seen
that & degree of prewindowing is incorporated whenever the comstant ki is
selected such that 1<k;<p. Normally, such choices are to be avoided since
they will goemerally 1lead to relatively poor AR modeling due to the
unrealistic prewindow assumption thereby being made on the time series. As
k; ranges over the integers 1 to p+l, the degree of prewindowing incorporated
varies from full at k=1 to nome at ky=p+l. This prewindowing behavior is
conveniently depicted in expression (9.7).
In a similar fashion, the zeroes which appear in the lower left corner
of matrix § AT there due to the implioit postwindow assumption that x(n) = 0
for N+1{(n(N+p. This equally unrealistic assumptioz concerning an unobserved
sogment of the time series is to be generally avoided. A degree of
postwindowing is incorporated whenever the index kg is chosea to lie in the
range 2{kr{p+1. The smallest value of ks for which the postwindow assumption
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is avoided is seen to be ky=1, Thus, as the index ky ranges from 1 to p+l,
the degree of postwindowing incorporated varies from nome at ka=1 to full at
kz-p+1’.'

The four most widely used of the adaptive autocorrelstion estimator
mothods are listed in Table 9.1 (e.g., see refs. [25],[46],[471). Each of
the methods there shown are seen to entail combinations of maximum windowing
and no windowing. In the govariance method, the characteristic constants are
chosen to be k; = p+1 and kz=1. This particular choice is seen to provide
the largest number of lag products in the antocorrelation estimates (9.4)
over which no data windowing is involved. As might be expected, the
covariasnce methol generally provides the best AR modeling and spdct:al
resolution performance vwhen compared with the remaining members of the
adaptive autocorrelation estimator class., VWith this in mind, unless special
considerations dictate otherwise, the covariance method is the most
preferable choice fo~ an adaptive implementation,

In the three remaining methods listed inm Table 9.1, it is seen that a
maximum amount of prewindowing, postwindowing, or, both are being employed.
It is then not surprising that each of these methods will genmerally provide
relatively poor modeling performance., This will be partiocunlarly true for
data lengths N which are not significantly larger than the AR order parameter
P. As the data length N increases so that N))p, however, each of the four
methods will provide comparsble modeling performance. This is due to the
faot that the windowed portions of the data matrix will play a
proportionstely smaller role in the estimate ﬁ as N increases. An
appreciation for this behavior is readily obtained upon examination of the
kernel matrix (9.7).

As suggested earlier, the primary reason for preferring the sdaptive
autocorrelation estimator (9.4) over the standard unbiased estimator (5.4) is
that the former may be used to effect a computationally efficient adaptive AR
modeling method. To gain an insight as to why this is so, let us first
substitute the antocorrelation matrix estimate (9.5) iato the fundamental AR
modeling expression (9.3). The required parameters of the AR(p) model are
then found by solving the resultant system of pormal equations

In*Tny = (Wky-k) Ibg 1% oy (9.8)
in which the normalizing parameter b, is to be selected so that the first

component of N is one, The data matrix product IN.XN in this expression is

i




METHOD CONSTANT CONSTANT STATISTICAL
kq ka PROPERTIES
OF R
1. Covariance ptl 1 (i) unbiased
(No windowing) (ii) consistent|
2, Full Proewindowing 1 1 (i) biased
No Postwindowing (ii) consistent
3. Full Postwindowing p+l p+l (i) diased
No Prewindowing (1i) consistent
4. Autocorrelation 1 p+l (i) biased
(Full pre and (ii) consistent
postwindowing) (iii) Toeplitz

Table 9.1 Adaptive AR Autocorrelation Estimation MNethods

seen to gompletely characterize the desired autoregressive parameter vector
ay associated with the N time series observations (9.1).

As the time index N is incremented by one (i.e., the (N+1)3t time series
observation x(N+1) becomes available), it is seen that a new system of normal
oquations of form (9.8) will arise in which the index N is replaced by N+1.
The resultant data matrix product !N...1°IN...1 which characterizes this new
system of equations will in turm give rise to the updated autoregressive
parameter vector anyi. We can continue this systematioc procedure to gemerate
the updated autoregressive parameter vectors gn.i, aN+3» ¢tc. as the new time
series observations x(N+2), x(N+3), etc. become available. The ability to
ovolve an adaptive solution procedure when using this approach will be then
dependent om our obtainisg an effective method for updating the data matrix
products IN®Iy as N evolves.

Adaptive Algozithm: ks =1

The adaptive expression relating the successive data matrix products
will be considerably eased if the comstant ky is selected so as to provide
either no or full postwindowing. To illustrate this point let us first
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examine the case of nompostwindowing for which k=1 while allowing ki to take
on any value in [1,p+1]. From examination of the defining expression (9.6),
it is seen that the data matrix Xy41 may be obtained by appending a row
vector to the bottom of data matrix xﬂ' This results in the following
recursion on the dats matrix products

vl Ine1 = Xy Xy + ENelEneg N pH (9.9)
in which Zy,1 is the above mentioned appended 1x(p+l) row vector
Enyp = [z2(N1), x(N), ooes x(N+1-p)] (9.10)

It is important to note that this data matrix product recursive expression
commences at N=p+l which corresponds to the first time index at which ‘;xu

has its full form. Thus, the matrix Xp41Xp+1 serves the role of initializing
the above recursive relationship. The elements of this initializing matrix

are obtained from expression (9.4) upon setting ko=1 and N=p+l, that is

p+l
1841 Xpar(i i) = ) x(kel-i) x(k#l-) 1< S pHl (9.11)
k=ky 1£jsp1

It is interesting to note that although each member of the nonpostwindow
class (as identified by kj=1 and kis[1,p+1]) will be governed by the same
recursion (9.9), they will each give rise to a generally differeat set of
sutocorrelation estimates. This is due to the fact that the initializing
matrix (9.11) will be gemerally different for various choices of kj,

From recursive expression (9.9), it is seen that successive data matrix
products differ by the rank one matrix Zx... ;‘:ﬂ. This simple
interrelationship will in turn enmable us to obtain a recursive expression for
the data matrix product inverses [Xy Xyl-1, We are interested in these
inverses since they will be ultimately used when solving expression (9.8) for
the AR model parameters. This required matrix iaverse recursion will make
use of expression (9.9) and the following well known lemma

Lemma 9.1: Let A and A+ u* y each be nonsingular sxs matrices where gy
and y are 1xs vectors, then

1 _ (A 1ge) tva 1)

(A+ge gl =™ (9.12)

(1+3yA° gv)
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Upon setting A = xﬁ Iy and 3 = ¥ = xny1 in this lemma, the required recursive
matrix inverse oxpression is found to be
.
. - s _ INH YNy
[iveg Tneal™d = Dy I L - = 2 gor N 2 gy
1+ 2y,
where (9.13)

Ter = B (XNEINTT

In using this matrix inverse recursion, it is important to note that it is
only applicable for time indices N 2 p+tky., This is a direct consequence of
the fact that the data matriz products Xy Xy are singular for all time
indices N ¢ p+kq in the nompostwindowing case ky=1., To use this recursive
approach, it is therefore necessary to first compute the initializing matrix
inverse [X IN]71 for N = p+ky using a standard matrix inversiom routine such
as Gaussian elimination., Subsequent matrix inverses for N > p+k; may be then
officiently obtained upon using recursion formula (9.13).

To complete the adaptive AR modeling procedure, we next incorporate the
data matrix product inverse routinme (9.13) into the AR modeling equations
(9.8). A little thought will convince oneself that the simple three step
procedure outlined in Table 9.2 will provide the reguired adaptive
autoregressive parameter vector procedure. The second step is seen to yield
tks unnormalized solution to expression (9.8) with N replaced by N+1 while
the third step ensures that the first component of sy is ome. In terms of
computational complexity, an examination of equation (9.13) indicates that
2(13-!-1)2 operations will be required for updating [xﬁle'l. The resultant
autoregressive parameter vector solution as represented by steps 2 and 3 of
Table 9.2 will require an additional (p+l) operationms, Thus, the

computational complexity of the mnonpostwindowing adaptive algorithm (i.e.,
ky=1) is then o(pz). This algorithmic approach is applicable for anmy
selection of the comstant ki with the most likely choices being from the
range [1,p+1]. The most useful implementation of this adaptive algorithm
corresponds to the selection ky=p+l. In this case, the covariance method as
specified by kiy=p+l, ky=1 is obtained. As pointed out previously, this
choice normally provides the best adaptive AR modeling performance behavior.




Step 0: Imput Data: x(N+#1), [X3xN1>

Step 1: Compute [!':_._1 IN+1]1"1 using recursion (5.14)

Step 2: Let ¢ = [1;_._1]“_._1]’1 e1

Step 3: aN+1 = o(1)"1 ¢ where o(1) is the first componment of g.

Table 9.2: Adaptive AR Modeling Algorithm—Covariance Methods
(Ng=2p+1) and Prewindow (No=p+l) methods.

Adaptive Algorithm ky = p+1
Using similar reasoming, it is also possible to evolve an efficieat
adaptive algorithm for the full prewindowing case ky = p+1, In this
situation, it is readily found that the data matrix products are recursively

related accc :ding to
IN+1XN+1 = XNEN + Dne N)p+l (9.14)

in which DN- is a (p+¥1)x(p+l) Toeplitz conjugate symmetric matrix with
elements
Z(N+1) x(N+1+i-j) i3

Dn(i,j) = (9.15)
x(N+1) E(N+1+i-j) j2t

Due to the Toeplitz comjugate symmetric property of the perturbation matrix
Dy, it will be possible to evolve an efficient adaptive method for imverting
the data matrix products [xN‘xN]. The computational complexity of this matriz
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inversion routine will be also o(p2). The details of this routine are rather
involved and will be therefore not given here due to spsce limitations,
Since the covariance method is the most preferable choice for the adaptive
class of autocorrelation estimators, however, this omission is not serious in
any ocase. It is to be noted that efficient adaptive lattice structured
algorithms may also be employed for updating the AR parameters [46],[47]).

Forward-Backward Approsch
In some applications, it is possible to achieve a degree of improvement

A A Mt -

in the AR spectral models by using the concept of data time reversal.
Namely, it makes use of the observation that if {x(n)} represeats a
wide—sense stationary process, then its time transposed conjugated image as
; specified by

y(n) = ¥(s-n) (9.16)
will also be wide—sense stationary for any choice of the shift variable s,

Moreover, the autocorrelation sequence of this time transposed conjugated
image is readily found to be identical to that of the original time series, b
that is

ry(n) = rg(n) (9.17)
It is now possible to use this time transpose property to effect a new

autocorrelation estimation scheme. Ia particular, upon selecting s~N-1, the

original observation set (9.1) is seen to give rise to the following set of
time transposed conjugated elements

y(a) = Z(N+1-n) 1{ngN (9.18)
If thess time reversed observations are incorporated into expression (9.4),

e Haie o

it will be gemerally found that a new set of auntocorrelation estimates will
result. Ia particular, the overall backward aatocorrelation matrix estimate
will take the form,

A
R = _1_ YN (9.19) 1
N+k2-ky

in which the elements of the (N+kgy-ki)x(p+l) matrix Yy are given by
IN(L,§) = E(N+1-Kkq-i+)) 1 i ¢ N+kgky (9.20) ‘ .
1j&m i
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Although the forward and backward autocorrelation matrix estimates (9.5)
and (9.19) will be generally different (except for the asutocorrelation choice
ky = 1, kg = p+l), they are ocach secking to estimate the same underlying
sutocorrelation matrix R, It then follows the so—called forward-backward
estimate as specified by

A
R -__ 1 [XXN+ T8N ] (9.21)

2(N+kg-ky)

will provide an additional improvement in autocorrelation estimation
fidelity. This is due to the fact that cach of the emtities XINXy and Y§Yy
will coantain lag products not found in the other,

The additional autocorrelation estimation fidelity achieved in using
this time transposition approach typically results in a marginal improvement
in spectral estimation performance. Fortunately, this improvemeant is not
accrued at the cost of an excessive increase in computational complexity.
This is due to the fact that the matrices Xy and T which form R are Toeplitz
type. It is therefore possible to devise efficient algorithms that will
solve the system of equations

(XRXN + YYNIAN = o ¢1 (9.22)
in which the computational complexity is o(p2).

odel Orde ermination

One of the principal considerations in obtaining AR models from raw time
series observations is that of model order seloction, It has been observed
that when p is selected too low, there will be generally too few model poles
to adequately represeat the underlying spectrum. On the other hand, too high
of a ochoice for p will typically result in spurious effects (e.g., false
peaks) in the spectral estimate, VWith these thoughts in mind, investigators
have proposed various order selection procedures. Three of the more widely
used techniques are Akiske’'s final prediotion error method as well as his
information criterion [1],[2],[4], and, Parzen’s 'oriterion autoregressive
transfor’ function [54). Although these procedures typically work well, they
can yield unsatisfactory performance in some ocases (e.g., see rof. [34] and
[62]). The user is therefore cauntiomed to use discretion in applying the
above and other model order determination procedures, The method to be
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ultimately used should be determined through empirical experimentation based
on time series related to the specific application under comsideration.

It is possible to apply a conceptiomally straightforward procedure for
model order selection which does not possess many of the drawbacks alluded to
above. It is based on the observation that in the case where perfect AR
autocorrelation lag values are given, the (p+1)x(p+l) autocorrelation matrix
R with elements

R(i,j) = rg(i-j) 1{1i,j {p¥1 (9.23)
will have rank p+l so long as p is less than or equal to the order of the
underlying AR process (hereafter taken to be py). For all values of p
greater than pj, however, the rank of the (p+1)x(p+l) autocorrelation matrix
will be pj. Thus, to determine the proper rank selection in the idealistic
case of perfeot autocorrelation lag informstion, we simply increase the
parsmeter p until the rank of R is less than full (i.e., less than p+l).
This will occur at p = pjy+l, thereby giving us the appropriate order
selection, It should be noted that whem the auntocorrelation lags being used
don't correspond to an AR process, then the matrix R will be generally of
full rank for all p 2 1.

In the more realistic case in which raw time series are used to form the
autocorrelation matrix estimate ﬁ. the rank of this matrix will be typiocally
full for _a_u_ values of p. This will be true even when the time series is an
AR process, This seeming contradiction arises due to statistical errors
inherent in any autocorrelation lag estimation procedure that might be used
in forming R, Nonetheless, even though ii will have full rank, it will be
gonerally found that whea p > pj, this matrix will have (p—pj3) of its
eigenvalues ’'close’ to zero. Thus, an order selection procedure which has
provided satisfactory performance is ome entailing examinstion of the
eigenvalue behaviour of the autocorrelation matrix estimate ﬁ as a funotion
of p. The appropriate order choice will be thiti value of p, demoted by pj,
for which a has (p-py) of its eigenvalues sufficiently close to zero for all
P 7> P1. A particularly attractive method (i.,e., the SVD method) for
implemonting this procedure was given in Section X.
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X. ARMNA Nodeling: Adaptive Implementation

When an adaptive implementation of the ARNA modeling methods as
described in Sections VI and VII is desired, it will be necessary to
incorporate sutocorrelation lag estimate procedures which are compatible with
an adaptive implementation (the unbiased estimator is mot compatible). In
particular, we shall now examine s class of estimators which provides an
adaptive mechanism for estimating the elements of the antocorrelation matrix

R) as required in expression (6.6). This class of adaptive estimators will
be governed by the relationship

. N-q-2+ky
Ry(4,j) = ! F(kH-i)x(k+qe2-§)  1igt (10.1)
Whkrel ey 1604

It is apparent that this expression provides an estimate for the lag element
rx(q+tl+i-j) which is the (i,j)tR element of the autocorrelation matrix R; as
defined in equation (6.2). The fixed constants ki and ks which characterize
this estimator are normally selected so that the number of lag products there
used (i.e., N+ky-kj-q~1) equals or exceeds p+l. This choice will generally

ensure the invertibility of matrix R’WRI and thereby a unique solution for
the autoregressive parameter when using expression (6.6). For reasons which
will be shortly made apparent, these constants are usually further
constrained to satisfy 1 { ky ( t and 1 { k3 { p+l although other choices are
possible,

Each autocorrelation estimator in the adaptive class (10.1) will be
identified by a particular choice of the two-tuple (kj,k3). Moreover, each
estimator in this oclass will provide a generally different set of
autocorrelation lag estimates from the set of time series observations x(n)
for 1 {( n { N. Clearly, our ultimate desire is to select that estimator
which genmerally provides the best ARMA modeling. The govariance estimator as
identified by ki=t and kj=1 furnishes an obvious choice. Before treating
specific estimators, however, let us first eoxamine the goneral adaptive
estimator (10.1).

The primary reason as to why the adaptive estimator (10.1) lends itself
to an adaptive implementation is due to the algebraic structure impliocitly

contained within its definition. Namely, the autocorrelation matrix estimate
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as formed from the ontries (10.1) may be always representable im the

convenient matrix product format

B = ( 1 ) W XN (10.2)
M+kz-k1-q-1 !
| |
-~ in which the (N+ky-ki—q-1)x(p+l) data matrix Xy has its clements specified by ;
- IN(i,§) = x(kg+qti+i-§) 1 i ( N+kgkg-q-1 (10.3) g
’ 1¢3¢pm |
while the (N+kp-kj-q-1)xt dats matrixz Yy has elements '
Ty(i,§) = x(kg + i-)) 1 < i ¢ N+kgky-q-1 (10.4) ‘
13t |

A simple matrixz manipulation will prove the equivalencies of expressions ‘
(10.1) and (10.2). VWe again adopt the convention of setting to zero any

element eatries of XN or Yy for which x(n) lies outside the observation

interval 1 { 8 {( N, and, wve also attach the subsoript N to these data

, matrices so as to explicitly recogmnize there dependency om data leangth,

ﬁ As in the AR modeling csse, the parameters k; and ky that ideatify the :
autocorrelation estimator (10.1) can give rise to data windowing., To ses why !

4

' this is 30, let us consider two kermel Toeplitz type matrices which coatain,

) as submatrices, all of the data matrices associated with the adaptive class

;; of ARMA autocorrelation estimstors. These kernel matrices are specified by

. —_ - - -—

H x(q*Z) o o o x(rp"ﬁ) 8(1) kl-l

I; : ) . T

3 . . prewindoviag

{ ‘e ‘.

l x(t+qtl) . . . x(t+qptl) =(¢) . . . x(1)] Ekg=t

‘ XN - . . yN = . . (10.5)
kz-l :(N) ¢« s o x(""’) x(N_q-l) . . x(“‘rt) :
ko=p+l O x(N) J Lx(N-frrl)-. . x(m!‘-rt)
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Upon examination of expressions (10.3) and (10.4), it is readily established
that the data matrix Iy (or Yy) may be identified with that submatrix of the
kernel matrix ZN (or yN) composed of its kp3t through (N-¢g-2+k3)st rows
inclusively. Thus, corresponding to oach adaptive autocorrelation estimator
(i.e., choice of pair (kj,k3)), there will be an associated pair of data
matrices obtained by using this row ideatification scheme.

The zeroes which appear ian the upper right cormer of kernal uttixy N
are there due to the implicit prewindow assumption that x(n) = 0 for 2-t{(ml0.
This unreslistic restrictioa om an unobserved segment of the time series is
to be normally avoided. It is to be noted from the represeamtatiom for Yy
that s selection of ky)t will avoid anmy data prowindowing, On the other
hand, a degree of prewindowing is incorporated whemever k; is such that 1
Skict-1., Thus, as k; ranges over the integers 1 to t, the mmouat of
prewindowing varies from full at ky=1 to nome at kj = t. '

In 2 similar fashion, the zeroes which arise in the lower left cornmer of
kernel matrix ZN are there due to the implicit postwindow assmmption that
x(n) = 0 for N+1{adN+p. This coatrived assumption on an unobserved segment
of the time series is also to be avoided. Upon examination of the kernmel
matrix N, it is apparent that postwindowing may be avoided by selecting k3 <
1, It is also clear that the degree of postwviandowing varies from none at
ko=l to full at ka=p+l.

The four most appealing choices for adaptive estimators are ideatified
in Table 10.1 in which it is noted that each involves combimations of maximum
windowing and no windowing. The govarisnce method emtails that particular
combination of no prewindowing (i.e,, k3 = t) and no postwindowing (i.e.,
kow1).. This method is seen to provide the largest number of lag products
(i.0., N-g~t) in estimator (10.1) for which no data windowing is involved.
As might be expected, the govariance method typically provides the bdest
modeling performance from the ARMA adaptive oclass of autocorrelation
estimators,

The three other methods listed in Table 10.1 are seen to employ either
full prewindowing, full postwindowing, or, both, It is clear that the
nodeling performance capabilities of each of these three meothods will tead to
be relatively poor when the data length N is only marginally larger thaa the
ARMA order psrameter p or the parameter t. Omn the other hand, for the case
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in which N is much larger tham either p or t, each of the methods listed in
Table 10.1 will provide ocomparable modeling performance. This is s
consequence of the fact that the windowed portions of the dats ntri.cuz N

uuly“ play a proprtiomately smaller role in the estimate of Ry as N 1
inereases. In any case, unless special comsiderations dictate otherxwise, the
covariance method is the most ©preferable ochoice for aam adaptive
: implementation,
METHOD CONSTANT CONSTANT STATISTICAL !
ky ko PROPERTIES
OF Ry
K
1. Covariance t 1 (i) nunbiased
; (No windowing) (ii) ocomsistent
; 2. Full Prewindowing 1 1 (1) biased
No Postwindowing (ii) consistent
¥ 3. Full Postwindowing t p+l (1) Dbiased
" No Prewindowing (ii) consistent
h 4. Autocorrelation 1 ptl (i) Dbiased
(Full pre and (11) consistent
postwindowing) (iii) Toeplitz
!
‘.‘: Table 10.1: Four ARMA Adaptive Autocorrelationm
Estimator Methods
In order to provide the reason as to why members of the adaptive class
of autocorrelation estimators are ameamable to an adaptive implementation,

let ums substitute the matrix produot representation for R; as givea by
expression (10.2) into the basic ARMA modeling equation (6.6). The resultaat
sutoregressive parsmeter <veéctor is thea obtained by solviang the =normal

equations

ININTNEN N = o 93 (10.6)

where the weighting matrix W has been set equal to the ideantity matrix wiile
the normalizing constant a is selected so that the first compomeant of gy is
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one. From this expression it is appareat that the dats matrix produst
IPNININ completely identifies the ARMA model’s autoregressive pasameter
vector. Ia order to compute g, it will be then nscessary to compute the
data matrix product’s inverse at each value of N where the autoregressive

parameter veotor is required. This can be a particularly imposing
computational task if real time signal processing is to be
archieved.

Adaptive Algorithms kg = 1

Vhea the amtoregressive parameter vector is required at oesch time iadex
N, it will be beneficial to effeot an adaptive method for updating the data
matrix product in expression (10.6). This sdaptive implementation is readily
ackieved for the nonpostwindowing case ky=1 in which k1 may take on any
appropriate value (e.g., 1{k3<t). Namely, upon examination of expression
(10.5) with k=1, it is seea that the data matrices IN+1 and YN+1 are
obtained by appending appropriate row vectors to the bottom of data matrices
IN and Yy, respectively. Using this property, the following recursion oa the
data matrix product is obtained '

W41 Ineg = WIN + IR 2N N2t (10.7s)
vhere N and IN are the above meationed 1x(p+l) and 1xt row vectors, that are
appended to Xy and Yy, respectively. These vectors are spocified by

AN = [x(N+1), 2(N), ..., x(N+1-D)] (10.7v)

IN = [2(N-Q), x(N-g1), ..., x(N+1-g-t)] (10.70)
It is to be moted that recursive oxpression (10.7s) holds omly for time
indices N2t since t is the first time index where YJXN takes on its full
slgebraic form. VWith this ia mind, Y$X, thea serves the role of an
initializing matrix for this recursion. Although the purturbation matrix
Yndey in this recursion does not depend on the parsmeter kj, the initializing
matrix Y$X; does. As such, the sequence of matrix products as generated by
expression (10.7s) will be differeat for various choices of kg,

The full data matrix product as required im expressiomn (10.6) may be
readily obtained from =zrelationskip (10.7) and takes om the following
recursive fora

WNTNTN TN = TNINTNEN + Sk + Znehy * (0NIN) Enedn

N2t (10.82)
whore zy is the 1x(p+l) vector givea by

By = 20 T (10.8v)

Ataoes ot

e nw— 0 EA L




- e

o D 2

ey e gAY,

An examinmation of this recursive expression indicates that t(p+l) operatioas
are required to compute z. while another 2(p+1)2 operations are expended ia
updating the full matrix product (10.8a). In arriving at this computatiossl
requirement measure, it has been tacitly assumed that the matrix products
T¥IN snd INYNYNIN are available.

Vhen updates of the autoregressive parameter vectors By are not required
at each time index N, we could thea use recursioas (10.7) aand (10.8) to
compute the data matrix products !ﬂxu aad xﬁrnm in s computationally
efficient manner. At those time instants at whick the svaluatioa of ay is
required, we would then simply solve the ARMA modeling equatioas (10.6). If
standazd procedures are used, this solution will entail on the order of
(p+1)3 computatioas. '

In various appliocations, however, it may be ascessary to compute the
autoregressive parameter vector at each (or nearly each) valuwe of time N.
For such cases, it would be much more advantageous to replace the recursion
(10.8) by s recursion for the inverse matrix product [XJYNYNXNI"1. To effect
this recursion, we note from relationship (10.8) that the matrix products
mulﬂ!pq at two contiguous time indices (i.e., N and N+1) differ by the sum
of three rank one matrices, Using this fact, it is them possible to apply
Lomma 9.1 successively three times to effect the desired matrix product
inverse recursion. The main steps of this recursive inversion are listed in
Table 10.2. It is important to note that this recursion commences at N =
qtptki+l which ocorresponds to the first time instant at which the matrix
product x,:!n!,‘,x" is generally invertible. Steps 3 through 6 provide the
mechanism for this matrix product inversion while step 7 gives the required
solution to the ARMA modeling equations (10.6). In term of computatiomal
complexity, it is readily showa that the nmmber of mmlitiplication aad
addition operatioas required to implement this algorithm is of order p(t+3p)
for each data point update.

The sdaptive algorithm described in Table 10.2 is for the particular
nonpostwindowing selection ky=1 wherein the parameter k; will be typically
selooted to satisfy 1 { kg ¢ t, As suggested earlier, the covariamce method
identified by k=t and k2=1 generally provides the best overall modeling
performance for the olass of adaptive estimators. Ve may therefore use the
adaptive ARNA modeling method to provide aa efficieat procedure for
gecursively implementing the desirable covariamce method. As a fimal amote,




although it is possible to effect adaptive implementations for other choices

of ky (i.e., k1#1), the resultant algorithm is of a much more complex mature.
Since the covariance method is almost iavariably used, however, we shall be |
coateant with the nompostwindowing slgorithm. '

b It is also possible to provide a lattice implementatiozn of the adaptive
- aslgorithm here developed [19] end [49]. This will entail restricting t = p
‘ thereby imparting a deoresse in spectral estimation performance. The
advantage socorued by wusing the lattice implementation is computatiomal in
asturs. In particular, the aumber of operations to update the lattice
network is o(p np) for each new time series observation,




STEP 0 The iamput to commence the algorithm at N = qtptky+l is

Wy aad [TNIIN]~
STEP 1 N = gtptk,+1
STEP 2 Compute Yy4f Ny41 using expressioa (10.7)
STEP 3 2=y !:!N
STEP 4 3 = & ¥ = &N A1 = ONTNRANIY
Compute [A7 + nf v1]™1 using Lemma 9.1
STEP S 33 = zu, Y, = 2y A271 = [Ag + 3f v3172
Co-pntc’ (A + 33 ¥217! using Lemma 9.1

STEP 6 u3 = (quVy) Sy Y5 = Zygo As72 = [ + 33 y5172

Compute [A3 + 33 ¥3171 = [Xy43¥n+1Tneidn+1]"1 using
Lemmsa 9.1

STEP 7 ¢ = [XnePTnaaYnafXNe1]"leg !

A+l = ©(1)71g  where c(1) is the first componment of g

STEP 8 Let N = N+1, GO TO STEP 2

TABLE 10.2: Adaptive Algorithm for Computing ansg
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A philosophy direoted towards the ratiomal modeling of wide—sense

g III. Conclusions

2

¢

stationary time series has been presented. It is explicitly based upon the

Yole~Walker equations vwhich oharacterize the autocorrelation sequence
associated with the rational time series being modeled., 1Ian particular, the
key oconcept is that of using an overdetermined set of Yule—Walker equation

- e S O]

ovaluations for estimating the parameters of a postulated rationai model.
This approach has been found to reduce the data induced hypersemsitivity of
the parameter estimates im comparison to manmy of the more popular parametrioc
approsches which invoke a minimal set of evaluations for obtaining the
parameter eostimates, These latter methods include the Burg algorithm, many
LMS methods, sad the ome—step predictor. Comparstive examples illustrating
this reduced hypersensitivity have beoen given in which the modeling is based
on both exact autocorrelation lag information, amd, raw time series
observations., '

The method of singular value decomposition was next introduced and was
used to obtain an effective rational model order determinmation procedure as
well as providing a novel rational modeling procedure whose performance has
been empirically found to oftea exceed that of existing techniques. Studies
are ourrently under way to more effectively use this SVD adsption for
achieving yet further performance improvements,
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